The third intracellular (3i) loops of the alpha 2A- and alpha 2B-adrenergic receptor (AR) subtypes are critical for retention of these receptors at the basolateral surface of polarized Madin-Darby canine kidney (MDCKII) cells at steady state. The third intracellular loops of the alpha 2A, alpha 2B, and alpha 2C-AR subtypes interact with spinophilin, a multidomain protein that, like the three alpha 2-AR subtypes, is enriched at the basolateral surface of MDCKII cells. The present studies provide evidence that alpha 2-AR interaction with spinophilin contributes to cell surface stabilization of the receptor. We exploited the unique targeting profile of the alpha 2B-AR subtype in MDCKII cells: random delivery to apical and basolateral surfaces with rapid (t(1/2) < or = 60 min) apical versus slower (t(1/2) = 10-12 h) basolateral turnover. Apical delivery of a spinophilin subdomain containing the alpha 2-AR-interacting region (Sp151-483) by fusion with apically targeted p75NTR extended the half-life of alpha 2B-AR at the apical surface to approximately 3.6 h and eliminated the rapid phase (0-60 min) of alpha 2B-AR turnover on that surface. Furthermore, we examined alpha 2B-AR turnover at the surface of mouse embryo fibroblasts derived from wild type (Sp+/+) or spinophilin knock-out (Sp-/-) mice. Two independent experimental approaches demonstrated that agonist-evoked internalization of HA-alpha 2B-AR was accelerated in mouse embryo fibroblasts derived from Sp-/- mice. These findings are consistent with the interpretation that endogenous spinophilin contributes to the stabilization of alpha 2B-AR and presumably all three alpha2-AR subtypes at the surface of target cells and may act as a scaffold that could link alpha 2-ARs to proteins interacting with spinophilin via other domains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M304195200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!