Interactions between the protein kinase C (PKC) and Chk1 inhibitor UCN-01 and the heat shock protein 90 (Hsp90) antagonist 17-AAG have been examined in human leukemia cells in relation to effects on signal transduction pathways and apoptosis. Simultaneous exposure (30 hours) of U937 monocytic leukemia cells to minimally toxic concentrations of 17-AAG (eg, 400 nM) and UCN-01 (eg, 75 nM) triggered a pronounced increase in mitochondrial injury (ie, loss of mitochondrial membrane potential [Deltapsim]; cytosolic release of cytochrome c), caspase activation, and apoptosis. Synergistic induction of apoptosis was also observed in other human leukemia cell types (eg, Jurkat, NB4). Coexposure of human leukemia cells to 17-AAG and the PKC inhibitor bisindolylmaleimide (GFX) did not result in enhanced lethality, arguing against the possibility that the PKC inhibitory actions of UCN-01 are responsible for synergistic interactions. The enhanced cytotoxicity of this combination was associated with diminished Akt activation and marked down-regulation of Raf-1, MEK1/2, and mitogen-activated protein kinase (MAPK). Coadministration of 17-AAG and UCN-01 did not modify expression of Hsp90, Hsp27, phospho-JNK, or phospho-p38 MAPK, but was associated with further p34cdc2 dephosphorylation and diminished expression of Bcl-2, Mcl-1, and XIAP. In addition, inducible expression of both a constitutively active MEK1/2 or myristolated Akt construct, which overcame inhibition of ERK and Akt activation, respectively, significantly attenuated 17-AAG/UCN-01-mediated lethality. Together, these findings indicate that the Hsp90 antagonist 17-AAG potentiates UCN-01 cytotoxicity in a variety of human leukemia cell types and suggest that interference with both the Akt and Raf-1/MEK/MAP kinase cytoprotective signaling pathways contribute to this phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2002-12-3785DOI Listing

Publication Analysis

Top Keywords

human leukemia
16
leukemia cells
12
17-aag ucn-01
8
protein kinase
8
hsp90 antagonist
8
antagonist 17-aag
8
leukemia cell
8
cell types
8
akt activation
8
17-aag
6

Similar Publications

Little is known about the impact of recent advances in acute myeloid leukemia (AML) treatment on racial/ethnic disparities in survival outcomes. We performed a retrospective cohort study of patients with newly diagnosed AML using data from a nationwide electronic health record-derived deidentified database. Patients were categorized based on their diagnosis date relative to venetoclax approval, as pre-novel therapy era (Pre era; 2014-2018; n = 2998) or post-novel therapy era (Post era; 2019-2022; n = 2098).

View Article and Find Full Text PDF

A 56-year-old male presented to the clinic with complaints of multiple skin lesions. A complete blood count (CBC) was not available. No constitutional symptoms were present, and physical examination revealed tender skin lesions of the back, arms, legs, and scalp.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis (IPF) is a fibrotic disease driven by both environmental and genetic factors. Epigenetics refers to changes in gene expression or cellular phenotype that do not involve alterations to DNA sequence. KMT2A is a member of the SET family which catalyses H3K4 methylation.

View Article and Find Full Text PDF

A polysaccharide APS-1 II from a medicinal plant Angelica sinensis represents an interesting therapeutic agent against leukemia. However, the synthetic accessibility of the highly branched and complex APS-1 II polysaccharide with multiple 1, 2-cis-glycosidic linkages remains a difficult task, impeding the in-depth structure-activity relationship biological studies and the development of carbohydrates-based therapeutics against leukemia. Here, we report the first chemical synthesis of tridecasaccharide repeating unit together with shorter sequences 4-mer, 6-mer and 9-mer from APS-1 II polysaccharide via one-pot orthogonal glycosylation strategy based on glycosyl ortho-(1-phenylvinyl)benzoates, which precluded the potential issues such as aglycone transfer associated with one-pot assembly with thioglycosides.

View Article and Find Full Text PDF

The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications.

Adv Sci (Weinh)

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China.

BTB domain and CNC homolog 1 (BACH1) belongs to the family of basic leucine zipper proteins and is expressed in most mammalian tissues. It can regulate its own expression and play a role in transcriptionally activating or inhibiting downstream target genes. It has a crucial role in various biological processes, such as oxidative stress, cell cycle, heme homeostasis, and immune regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!