Grip force control during object manipulation in cerebral stroke.

Clin Neurophysiol

Clinical Neuropsychology Research Group (EKN), Department of Neuropsychology, München-Bogenhausen Hospital, Dachauerstrasse 164, D-80992 Munich, Germany.

Published: May 2003

Objective: To analyze impairments of manipulative grip force control in patients with chronic cerebral stroke and relate deficits to more elementary aspects of force and grip control.

Methods: Nineteen chronic stroke patients with fine motor deficits after unilateral cerebral lesions were examined when performing 3 manipulative tasks consisting of stationary holding, transport, and vertical cyclic movements of an instrumented object. Technical sensors measured the grip force used to stabilize the object in the hand and the object accelerations, from which the dynamic loads were calculated.

Results: Many patients produced exaggerated grip forces with their affected hand in all types of manipulations. The amount of finger displacement in a grip perturbation task emerged as a highly sensitive measure for predicting the force increases. Measures of grip strength and maximum speed of force changes could not account for the impairments with comparable accuracy. In addition to force economy, the precision of the coupling between grip and load forces was impaired. However, no temporal delays were typically observed between the grip and load force profiles during cyclic movements.

Conclusions: Impaired sensibility and sensorimotor processing, evident by delayed reactions in the perturbation task, lead to an excessive increase of the safety margin between the actual grip force and the minimum force necessary to prevent object slipping. In addition to grip force scaling, cortical sensorimotor areas are responsible for smoothly and precisely adjusting grip forces to loads according to predictions about movement-induced loads and sensory experiences. However, the basic feedforward mechanism of grip force control by internal models appears to be preserved, and thus may not be a cortical but rather a subcortical or cerebellar function, as has been suggested previously.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1388-2457(03)00042-7DOI Listing

Publication Analysis

Top Keywords

grip force
24
grip
13
force control
12
force
11
cerebral stroke
8
grip forces
8
perturbation task
8
grip load
8
object
5
control object
4

Similar Publications

Powerful digital grasping is essential for primates navigating arboreal environments and is often regarded as a defining characteristic of the order. However, data on primate grip strength are limited. In this study, we collected grasping data from the hands and feet of eleven strepsirrhine species to assess how ecomorphological variables-such as autopodial shape, laterality, body mass and locomotor mode-influence grasping performance.

View Article and Find Full Text PDF

Introduction: The bilateral deficit (BLD) is a reduction in the amount of force during a bilateral task vs. the total force from the unilateral limbs performing the same task. We quantified the BLD during an upper body Wingate Anaerobic Test (WAnT) and evaluated the influence of sex and load on the BLD in force.

View Article and Find Full Text PDF

In carpal tunnel syndrome (CTS), pain and sensory disturbance are the main symptoms, but thumb palmar abduction (TPA) paralysis cannot be ignored as a concurrent symptom. The reliable quantitative measurement of TPA power was not established. The purpose of this study was to report on the reliability of TPA strength measurements by the hand-held dynamometry (HHD) in large samples of CTS and its superiority over other tests, including grip, pinch powers, TPA angles and manual muscle testing, in terms of clinical progress indicators.

View Article and Find Full Text PDF

How humans perceive the texture of a surface can inform and guide how their interaction takes place. From grasping a glass to walking on icy steps, the information we gather from the surfaces we interact with is instrumental to the success of our movements. However, the hands and feet differ in their ability to explore and identify textures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!