Colon-specific delivery of glucocorticoids is highly desirable for the efficient treatment of inflammatory bowel disease. We synthesized prednisolone 21-sulfate sodium (PDS) as a colon-specific prodrug of prednisolone (PD) and investigated its properties using rats as test animals. We expected that introduction of sulfate ester as a sodium salt might increase the hydrophilicity and restrict the absorption in the GI tract. If PDS is stable and nonabsorbable in the upper intestine, it will be delivered to the colon as an intact form, where it hydrolyze by the sulfatase to release PD. Compared with PD, the solubility of PDS increased and the apparent partition coefficient decreased greatly. PDS was stable on incubation with pH 1.2 and 6.8 buffer solutions and with the contents of the stomach and small intestine. On incubation with the cecal contents, PDS decreased to 9.6% of the dose in 10 h producing PD. The amount of PD increased to give a maximum 54% of the dose and decreased. As a control, when PD was incubated with the cecal contents, it decreased to 29% of the dose in 8 h, which implied that reduction of PD proceeded under such conditions. These results suggested that hydrolysis of PDS took place to produce and accumulate PD, which decreased by reduction as the incubation period extended. Our results suggested that PDS can be a promising colon-specific prodrug of PD, and sulfate ester group might serve as a potential colon-specific promoiety, especially for the drugs which are resistant to reduction in the colon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02976952 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!