Tetrahydromethanopterin (H(4)MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H(4)MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H(4)MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H(4)MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H(4)MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC152576PMC
http://dx.doi.org/10.1251/bpo48DOI Listing

Publication Analysis

Top Keywords

rfap synthase
40
synthase genes
16
synthase
12
rfap
10
colorimetric assay
8
ribofuranosylaminobenzene 5'-phosphate
8
5'-phosphate synthase
8
escherichia coli
8
h4mpt tetrahydrofolate
8
synthase rfap
8

Similar Publications

Purification, kinetic characterization, and site-directed mutagenesis of RFAP Synthase Produced in .

AIMS Microbiol

July 2019

Chemistry and Biochemistry Department, California State University at Fullerton, 800 North State College Blvd., Fullerton, CA 92834.

Methane-producing archaea are among a select group of microorganisms that utilize tetrahydromethanopterin (HMPT) as a one-carbon carrier instead of tetrahydrofolate. In HMPT biosynthesis, β-ribofuranosylaminobenzene 5'-phosphate (RFAP) synthase catalyzes the production of RFAP, CO, and pyrophosphate from -aminobenzoic acid (ABA) and phosphoribosyl-pyrophosphate (PRPP). In this work, to gain insight into amino acid residues required for substrate binding, RFAP synthase from was produced in , and site-directed mutagenesis was used to alter arginine 26 (R26) and aspartic acid 19 (D19), located in a conserved sequence of amino acids resembling the ABA binding site of dihydropteroate synthase.

View Article and Find Full Text PDF

The first committed step in methanopterin biosynthesis is catalyzed by 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (RFA-P) synthase. Unlike all known phosphoribosyltransferases, beta-RFA-P synthase catalyzes the unique formation of a C-riboside instead of an N-riboside in the condensation of p-aminobenzoic acid (pABA) and 5-phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) to produce 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (beta-RFA-P), CO(2), and inorganic pyrophosphate (PP(i)). Here we report the successful cloning, active overexpression in Escherichia coli, and purification of this homodimeric enzyme containing two 36.

View Article and Find Full Text PDF

This paper describes the design, synthesis, and successful employment of inhibitors of 4-(beta-D-ribofuranosyl)aminobenzene-5'-phosphate (RFA-P) synthase, which catalyzes the first committed step in the biosynthesis of methanopterin, to specifically halt the growth of methane-producing microbes. RFA-P synthase catalyzes the first step in the synthesis of tetrahydromethanopterin, a key cofactor required for methane formation and for one-carbon transformations in methanogens. A number of inhibitors, which are N-substituted derivatives of p-aminobenzoic acid (pABA), have been synthesized and their inhibition constants with RFA-P synthase have been determined.

View Article and Find Full Text PDF

Tetrahydromethanopterin (H(4)MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H(4)MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H(4)MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase).

View Article and Find Full Text PDF

Methanopterin is a folate analog involved in the C1 metabolism of methanogenic archaea, sulfate-reducing archaea, and methylotrophic bacteria. Although a pathway for methanopterin biosynthesis has been described in methanogens, little is known about the enzymes and genes involved in the biosynthetic pathway. The enzyme beta-ribofuranosylaminobenzene 5'-phosphate synthase (beta-RFAP synthase) catalyzes the first unique step to be identified in the pathway of methanopterin biosynthesis, namely, the condensation of p-aminobenzoic acid with phosphoribosylpyrophosphate to form beta-RFAP, CO2, and inorganic pyrophosphate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!