Geometric and electronic environments of vanadium have been addressed by (51)V magic angle spinning NMR spectroscopy of six-coordinated polyoxometalate solids. (C(4)H(9))(4)N(+) and mixed Na(+)/Cs(+) salts of the Lindqvist-type mono- and divanadium-substituted oxotungstates, [VW(5)O(19)](3-) and [V(2)W(4)O(19)](4-), have been prepared as microcrystalline and crystalline solids. The solid-state NMR spectra reflect the details of the local environment of the vanadium site in these hexametalate solids via the anisotropic quadrupolar and chemical shielding interactions. Remarkably, these (51)V fine structure constants in the solid state are dictated by the nature and geometry of the countercations. Electrostatic calculations of the electric field gradients at the vanadium atoms have been performed. Experimental trends are well reproduced with the simple electrostatic model, and explain the sensitivity of the anisotropic NMR parameters to the changes in the cationic environment at the vanadium site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja029246p | DOI Listing |
ACS Appl Mater Interfaces
October 2024
Institute for Frontier Materials (IFM), Deakin University, Burwood 3125, Victoria, Australia.
Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) are among the most promising materials for solid-state lithium metal batteries (LMBs) due to their inherent safety advantages; however, they suffer from insufficient room-temperature ionic conductivity (up to 10 S cm) and limited oxidation stability (<4 V). In this study, a novel "polymer-in-high-concentrated ionic liquid (IL)" (PiHCIL) electrolyte composed of PEO, -propyl--methylpyrrolidinium bis(fluorosulfonyl) imide (CmpyrFSI) IL, and LiFSI is designed. The EO/[Li/IL] ratio has been widely varied, and physical and electrochemical properties have been explored.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.
To increase catalytic efficiency, mesoporous supports have been widely applied to immobilize well-defined metal oxide clusters due to their ability to stabilize highly dispersed clusters. Herein, a redox-active heterometallic CeV-oxo cluster (CeV) was first presynthesized and then incorporated into mesoporous silica, SBA-15, via a straightforward impregnation method. Scanning transmission electron microscopy (STEM) and Fourier transform infrared spectroscopy (FTIR), in concert with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), verified the successful introduction of the CeV cluster inside the pore of SBA-15.
View Article and Find Full Text PDFJ Am Chem Soc
November 2020
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
For magnesium ion batteries (MIBs) to be used commercially, new cathodes must be developed that show stable reversible Mg intercalation. VS is one such promising material, with vanadium and disulfide anions [S] forming one-dimensional linear chains, with a large interchain spacing (5.83 Å) enabling reversible Mg insertion.
View Article and Find Full Text PDFJ Am Chem Soc
December 2018
Department of Chemistry , University of Cambridge, Lensfield Road , Cambridge CB2 1EW , U.K.
Metallization of initially insulating VO via ionic liquid electrolytes, otherwise known as electrolyte gating, has recently been a topic of much interest for possible applications such as Mott transistors and memory devices. It is clear that the metallization takes place electrochemically, and, in particular, there has previously been extensive evidence for the removal of small amounts of oxygen during ionic liquid gating. Hydrogen intercalation has also been proposed, but the source of the hydrogen has remained unclear.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
September 2018
School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel. Electronic address:
The ability of various pulse types, which are commonly applied for distance measurements, to saturate or invert quadrupolar spin polarization has been compared by observing their effect on magnetization recovery curves under magic-angle spinning. A selective central transition inversion pulse yields a bi-exponential recovery for a diamagnetic sample with a spin-3/2, consistent with the existence of two processes: the fluctuations of the electric field gradients with identical single (W) and double (W) quantum quadrupolar-driven relaxation rates, and spin exchange between the central transition of one spin and satellite transitions of a dipolar-coupled similar spin. Using a phase modulated pulse, developed for distance measurements in quadrupolar spins (Nimerovsky et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!