Background: Angiotensin II plays a prominent role in the progression of heart failure after acute myocardial infarction (AMI). Although both angiotensin type 1 (AT1) and type 2 (AT2) receptors are known to be present in the heart, comparatively little is known about the latter. We therefore examined the role played by AT2 receptors in post-AMI heart failure.
Methods And Results: In wild-type mice subjected to AMI by coronary artery ligation, AT2 receptor immunoreactivity is upregulated in the infarct and border areas. Among AT2 receptor-null (-/-) mice, the 7-day survival rate after AMI was significantly lower than among wild-type mice (43% versus 67%; P<0.05). All sham-operated animals of both genotypes survived through the study. Ventricular mRNA levels for brain natriuretic peptide were elevated in both genotypes 24 hours after coronary occlusion, with levels in AT2-/- significantly higher than in wild-type mice, as were their lung weights, and histological examination revealed marked pulmonary congestion in the AT2-/- mice. Cardiac function was significantly decreased in AT2-/- mice 2 days after AMI.
Conclusions: AT2 receptor deficiency exacerbates short-term death rates and heart failure after experimental AMI in mice. The AT2 receptor may thus exert a protective effect on the heart after AMI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.CIR.0000072763.98069.B4 | DOI Listing |
Sci Rep
January 2025
Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have shown efficacy in clinical trials for slowing chronic kidney disease (CKD) progression, but real-world data in diverse populations are limited. This retrospective study evaluated the effectiveness and safety of SGLT2i versus renin-angiotensin-aldosterone system (RAAS) blockade in CKD patients. Data from Ramathibodi Hospital (2010-2022) were analyzed, including 6,946 adults with CKD stages 2-4, with and without diabetes, who received SGLT2i (n = 1,405) or RAAS blockade (n = 5,541) for at least three months.
View Article and Find Full Text PDFNutrients
December 2024
Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
Food protein-derived antihypertensive peptides have attracted substantial attention as a safer alternative for drugs. The regulation of the renin-angiotensin system (RAS) is an essential aspect underlying the mechanisms of antihypertensive peptides. Most of the identified antihypertensive peptides exhibit the angiotensin-converting enzyme (ACE) inhibitory effect.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Otawara 324-8501, Japan.
Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure to GCs continues to affect not only intrauterine fetal development itself, but also the metabolic status and neural activity in adulthood through epigenetic changes such as microRNA change, histone modification, and DNA methylation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
Hypertension is a cardiovascular disease defined by an elevated systemic blood pressure. This devastating disease afflicts 30-40% of the adult population worldwide. The disease burden for hypertension is great, and it greatly increases the risk of cardiovascular morbidity and mortality.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary.
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!