Aeromonas spp. are pathogens of both humans and poikilothermic animals, causing a variety of diseases. Certain strains are able to produce two distinct types of flagella; polar flagella for swimming in liquid and lateral flagella for swarming over surfaces. Although, both types of flagella have been associated as colonisation factors, little is known about their organisation and expression. Here we characterised a complete flagellar locus of Aeromonas hydrophila (flg) containing 16 genes, this was analogous to region 1 of the Vibrio parahaemolyticus polar flagellum, with the difference that no flagellin genes were found on A. hydrophila while V. parahaemolyticus showed three flagellin genes. The flg region was present in all Aeromonas strain tested. Defined insertion mutants in flgL, were unable to swim, had a drastic reduction in swarming, lateral flagella, HEp-2 cell adhesion and biofilm formation. Mutations in flgN caused a drastic reduction in lateral flagella, inability to swarm, but these strains were still able to swim. Whereas the cheV mutants still produced both types of flagella and were able to swim and swarm. These results suggest that FlgN is required for lateral flagella formation and swarming motility, but not for polar flagellum-mediated swimming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0882-4010(03)00047-0 | DOI Listing |
Arch Microbiol
January 2025
Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, PR China.
Vibrio parahaemolyticus propels itself through liquids using a polar flagellum and efficiently swarms across surfaces or viscous environments with the aid of lateral flagella. H-NS plays a negative role in the swarming motility of V. parahaemolyticus by directly repressing the transcription of the lateral flagellin gene lafA.
View Article and Find Full Text PDFCurr Microbiol
December 2024
College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A & F University, Hangzhou, China.
Vibrio parahaemolyticus, a significant food-borne pathogen that causes economic and public health problems worldwide, can produce two types of flagella, the single polar flagellum responsible for swimming in a liquid environment and the lateral flagella (laf) that enable the bacteria to swarm on the tops of solid surfaces. The polar flagellar genes are expressed either in liquid or on a surface, however, laf genes would only be activated by surface sensing. In this study, the molecular mechanism of surface sensing activating laf gene expression in V.
View Article and Find Full Text PDFJ Microbiol
December 2024
Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China.
Vibrio parahaemolyticus has two flagellar systems, the polar flagellum and lateral flagella, which are both intricately regulated by a multitude of factors. CalR, a LysR-type transcriptional regulator, is sensitive to calcium (Ca) and plays a crucial role in regulating the virulence and swarming motility of V. parahaemolyticus.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2024
Fisheries College, Jimei University, Xiamen, Fujian, 361021, China. Electronic address:
Flagella-mediated swarming motility plays a crucial role in facilitating the rapid colonization and dissemination of bacterial within the host. The swarming motility of Pseudomonas plecoglossicida is intricately associated with its lateral flagella, and notably, the lateral flagella system of P. plecoglossicida encompasses a transcriptional regulator known as LafK.
View Article and Find Full Text PDFCurr Microbiol
November 2024
Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!