Singlet excitations in pyrochlore: a study of quantum frustration.

Phys Rev Lett

Department of Physics, Technion, Haifa 32000, Israel.

Published: April 2003

AI Article Synopsis

  • The CORE method is used to study the spin half Heisenberg antiferromagnet on frustrated checkerboard and pyrochlore lattices, revealing ground states that are spin-gapped singlets.
  • The effective Hamiltonians derived describe fluctuations of orthogonal singlet pairs on tetrahedral blocks at a low energy scale.
  • The findings offer insights into low temperature thermodynamics and suggest broader implications for models of quantum frustration beyond just the specific lattices studied.

Article Abstract

We apply the contractor renormalization (CORE) method to the spin half Heisenberg antiferromagnet on the frustrated checkerboard and pyrochlore lattices. Their ground states are spin-gapped singlets which break lattice symmetry. Their effective Hamiltonians describe fluctuations of orthogonal singlet pairs on tetrahedral blocks, at an emergent low energy scale. We discuss low temperature thermodynamics and new interpretations of finite size numerical data. We argue that our results are common to many models of quantum frustration.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.90.147204DOI Listing

Publication Analysis

Top Keywords

quantum frustration
8
singlet excitations
4
excitations pyrochlore
4
pyrochlore study
4
study quantum
4
frustration apply
4
apply contractor
4
contractor renormalization
4
renormalization core
4
core method
4

Similar Publications

Frustrated Magnetism and Spin Anisotropy in a Buckled Square Net YbTaO.

Inorg Chem

December 2024

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

The interplay between quantum effects from magnetic frustration, low-dimensionality, spin-orbit coupling, and crystal electric field in rare-earth materials leads to nontrivial ground states with unusual magnetic excitations. Here, we investigate YbTaO, which hosts a buckled square net of Yb ions with = 1/2 moments. The observed Curie-Weiss temperature is about -1 K, implying an antiferromagnetic coupling between the Yb moments.

View Article and Find Full Text PDF

Designer heterostructures have offered a very powerful strategy to create exotic superconducting states by combining magnetism and superconductivity. In this Letter, we use a heterostructure platform combining supramolecular metal complexes (SMCs) with a quasi-2D van der Waals superconductor NbSe_{2}. Our scanning tunneling microscopy measurements demonstrate the emergence of Yu-Shiba-Rusinov bands arising from the interaction between the SMC magnetism and the NbSe_{2} superconductivity.

View Article and Find Full Text PDF

The antiferromagnetic structure of Yb_{3}Ga_{5}O_{12} is identified by neutron diffraction experiments below the previously known transition at T_{λ}=54  mK. The magnetic propagation vector is found to be k=(1/2,1/2,0), an unusual wave vector in the garnet structure. The associated complex magnetic structure highlights the role of exchange interactions in a nearly isotropic system dominated by dipolar interactions and finds echoes with exotic structures theoretically proposed.

View Article and Find Full Text PDF

Quasi-One-Dimensional Spin Dynamics in a Molecular Spin Liquid System.

Phys Rev Lett

December 2024

RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.

The molecular triangular lattice system, β^{'}-EtMe_{3}Sb[Pd(dmit)_{2}]_{2}, is considered as a candidate material for the quantum spin liquid state, although ongoing debates arise from recent controversial results. Here, the results of electron spin resonance and muon-spin relaxation measurements on β^{'}-EtMe_{3}Sb[Pd(dmit)_{2}]_{2} are presented. Both results indicate characteristic behaviors related to quasi-one-dimensional spin dynamics, whereas the direction of anisotropy found in electron spin resonance is in contradiction with previous theories.

View Article and Find Full Text PDF

In this work, we theoretically explore whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics or if a parity-conserving/achiral theory is sufficient (e.g., long-wavelength/dipole approximation).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!