Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mammalian lipoxygenases have been implicated in several inflammatory disorders; however, the details of the kinetic mechanism are still not well understood. In this paper, human platelet 12-lipoxygenase (12-hLO) and human reticulocyte 15-lipoxygenase-1 (15-hLO) were tested with arachidonic acid (AA) and linoleic acid (LA), respectively, under a variety of changing experimental conditions, such as temperature, dissolved oxygen concentration, and viscosity. The data that are presented show that 12-hLO and 15-hLO have slower rates of product release (k(cat)) than soybean lipoxygenase-1 (sLO-1), but similar or better rates of substrate capture for the fatty acid (k(cat)/K(M)) or molecular oxygen [k(cat)/K(M(O)2)]. The primary, kinetic isotope effect (KIE) for 15-hLO with LA was determined to be temperature-independent and large ((D)k(cat) = 40 +/- 8), over the range of 10-35 degrees C, indicating that C-H bond cleavage is the sole rate-limiting step and proceeds through a tunneling mechanism. The (D)k(cat)/K(M) for 15-hLO, however, was temperature-dependent, consistent with our previous results [Lewis, E. R., Johansen, E., and Holman, T. R. (1999) J. Am. Chem. Soc. 121, 1395-1396], indicating multiple rate-limiting steps. This was confirmed by a temperature-dependent, k(cat)/K(M) solvent isotope effect (SIE), which indicated a hydrogen bond rearrangement step at low temperatures, similar to that of sLO-1 [Glickman, M. H., and Klinman, J. P. (1995) Biochemistry 34, 14077-14092]. The KIE could not be determined for 12-hLO due to its inability to efficiently catalyze LA, but the k(cat)/K(M) SIE was temperature-independent, indicating distinct rate-limiting steps from both 15-hLO and sLO-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0273462 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!