Repair system for noncanonical purines in Escherichia coli.

J Bacteriol

Department of Biological Sciences, The University at Albany, State University of New York, Albany, New York 12222, USA.

Published: May 2003

Exposure of Escherichia coli strains deficient in molybdopterin biosynthesis (moa) to the purine base N-6-hydroxylaminopurine (HAP) is mutagenic and toxic. We show that moa mutants exposed to HAP also exhibit elevated mutagenesis, a hyperrecombination phenotype, and increased SOS induction. The E. coli rdgB gene encodes a protein homologous to a deoxyribonucleotide triphosphate pyrophosphatase from Methanococcus jannaschii that shows a preference for purine base analogs. moa rdgB mutants are extremely sensitive to killing by HAP and exhibit increased mutagenesis, recombination, and SOS induction upon HAP exposure. Disruption of the endonuclease V gene, nfi, rescues the HAP sensitivity displayed by moa and moa rdgB mutants and reduces the level of recombination and SOS induction, but it increases the level of mutagenesis. Our results suggest that endonuclease V incision of DNA containing HAP leads to increased recombination and SOS induction and even cell death. Double-strand break repair mutants display an increase in HAP sensitivity, which can be reversed by an nfi mutation. This suggests that cell killing may result from an increase in double-strand breaks generated when replication forks encounter endonuclease V-nicked DNA. We propose a pathway for the removal of HAP from purine pools, from deoxynucleotide triphosphate pools, and from DNA, and we suggest a general model for excluding purine base analogs from DNA. The system for HAP removal consists of a molybdoenzyme, thought to detoxify HAP, a deoxyribonucleotide triphosphate pyrophosphatase that removes noncanonical deoxyribonucleotide triphosphates from replication precursor pools, and an endonuclease that initiates the removal of HAP from DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC154070PMC
http://dx.doi.org/10.1128/JB.185.10.3101-3110.2003DOI Listing

Publication Analysis

Top Keywords

sos induction
16
purine base
12
recombination sos
12
hap
11
escherichia coli
8
hap exhibit
8
deoxyribonucleotide triphosphate
8
triphosphate pyrophosphatase
8
base analogs
8
moa rdgb
8

Similar Publications

In , RecA plays a central role in the rescue of stalled replication forks, double-strand break (DSB) repair, homologous recombination (HR), and induction of the SOS response. While the RecA-dependent pathway is dominant, alternative HR pathways that function independently of RecA do exist, but relatively little is known about the underlying mechanism. Several studies have documented that a variety of proteins act as either positive or negative regulators of RecA to ensure high-fidelity HR and genomic stability.

View Article and Find Full Text PDF

Rationale: Plasmids can play a major role in the survival of pathogenic bacteria. Plasmids are acquired through horizontal gene transfer resulting in their spread across various strains, species and genera of bacteria. Colicins are bacterial protein toxins expressed by plasmid genes and released against co-located bacterial competitors.

View Article and Find Full Text PDF

Metagenomic insight into the enrichment of antibiotic resistance genes in activated sludge upon exposure to nanoplastics.

Environ Pollut

December 2024

Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China. Electronic address:

Activated sludge is an important reservoir for the co-occurring emerging contaminants including nanoplastics (NPs) and antibiotic resistance genes (ARGs). However, the impacts and potential mechanisms of NPs on the fate of ARGs in activated sludge are not fully understood. Herein, we used metagenomic approach to investigate the responses of ARGs, host bacteria, mobile genetic elements (MGEs), and functional genes to polystyrene (PS) NPs at environmentally relevant (0.

View Article and Find Full Text PDF

Proton motive force and antibiotic tolerance in bacteria.

Microb Biotechnol

November 2024

State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong.

Bacterial antibiotic tolerance is a decades-old phenomenon in which a bacterial sub-population, commonly known as persisters, does not respond to antibiotics and remains viable upon prolonged antimicrobial treatment. Persisters are detectable in populations of bacterial strains that are not antibiotic-resistant and are known to be responsible for treatment failure and the occurrence of chronic and recurrent infection. The clinical significance of antibiotic tolerance is increasingly being recognized and comparable to antibiotic resistance.

View Article and Find Full Text PDF

Global transcriptional response of Pseudomonas aeruginosa to UVA radiation.

Photochem Photobiol Sci

November 2024

Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina.

Ultraviolet A (UVA) radiation is the major fraction of UV radiation reaching the Earth's surface. Its harmful effects on microorganisms, due mainly to oxidative damage, have been exploited for development of natural solar and commercial UVA-based disinfection methods. In this work, the global transcriptional response of Pseudomonas aeruginosa exposed to ultraviolet A (UVA) radiation was analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!