Discordant phylogenies within the rrn loci of Rhizobia.

J Bacteriol

Soybean Genomics and Improvement Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA.

Published: May 2003

It is evident from complete genome sequencing results that lateral gene transfer and recombination are essential components in the evolutionary process of bacterial genomes. Since this has important implications for bacterial systematics, the primary objective of this study was to compare estimated evolutionary relationships among a representative set of alpha-Proteobacteria by sequencing analysis of three loci within their rrn operons. Tree topologies generated with 16S rRNA gene sequences were significantly different from corresponding trees assembled with 23S rRNA gene and internally transcribed space region sequences. Besides the incongruence in tree topologies, evidence that distinct segments along the 16S rRNA gene sequences of bacteria currently classified within the genera Bradyrhizobium, Mesorhizobium and Sinorhizobium have a reticulate evolutionary history was also obtained. Our data have important implications for bacterial taxonomy, because currently most taxonomic decisions are based on comparative 16S rRNA gene sequence analysis. Since phylogenetic placement based on 16S rRNA gene sequence divergence perhaps is questionable, we suggest that the proposals of bacterial nomenclature or changes in their taxonomy that have been made may not necessarily be warranted. Accordingly, a more conservative approach should be taken in the future, in which taxonomic decisions are based on the analysis of a wider variety of loci and comparative analytical methods are used to estimate phylogenetic relationships among the genomes under consideration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC154066PMC
http://dx.doi.org/10.1128/JB.185.10.2988-2998.2003DOI Listing

Publication Analysis

Top Keywords

rrna gene
20
16s rrna
16
implications bacterial
8
tree topologies
8
gene sequences
8
taxonomic decisions
8
decisions based
8
gene sequence
8
gene
6
rrna
5

Similar Publications

The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role. Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by rare compound heterozygous variants in RPL3L, a muscle-specific ribosomal protein that replaces the ubiquitous RPL3 in cardiac ribosomes. -linked heart failure represents the only known human disease arising from mutations in tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood despite an increasing number of reported cases.

View Article and Find Full Text PDF

Captivity Reduces Diversity and Shifts Composition of the Great Bustard () Microbiome.

Ecol Evol

January 2025

Hebei Key Laboratory of Wetland Ecology and Conservation Hengshui China.

Captivity offers protection for endangered species, but for bustards, captive individuals face a higher risk of disease and exhibit lower reintroduction success rates. Changes in the diversity of host bacterial and fungal microbiota may be a significant factor influencing reintroduction success. The great bustard () is a globally recognized endangered bird species.

View Article and Find Full Text PDF

is a well-known opportunistic pathogen, responsible for various nosocomial infections. UOL-KIMZ-24 was previously isolated from a clinical specimen, collected from Lahore General Hospital, Lahore (LGH), Pakistan, dated 3rd March, 2022. During the initial screening for antimicrobial susceptibility, the UOL-KIMZ-24 was found a multiple drug resistant (MDR) strain.

View Article and Find Full Text PDF

The complete plastome size of DC. 1813 was 159,893 bp in length and has a typical quadripartite structure. The 87,148-bp-long large single-copy and the 18,763-bp-long small single-copy regions were separated by a pair of inverted repeats (each 26,991 bp).

View Article and Find Full Text PDF

A complete chloroplast genome of S. S. Lai 2004 (Crassulaceae: Crassuloideae).

Mitochondrial DNA B Resour

January 2025

Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China.

We determined the complete chloroplast genome sequence of S. S. Lai 2004.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!