Members of the RasGRP family of Ras activators have C1 domains that bind diacylglycerol (DAG) and DAG analogs such as the tumor-promoting phorbol esters. RasGRP members could be responsible for some of the DAG signaling processes that have previously been attributed to protein kinase C (PKC). We found that RasGRP3 is selectively expressed in B cells, suggesting that RasGRP3 might function downstream of the B-cell receptor (BCR). Indeed, stimulation of Ramos B cells with the DAG analog phorbol ester myristate (PMA) results in the association of RasGRP3 with the membrane fraction. However, we also made the unexpected observation that RasGRP3 is phosphorylated, coincident with Ras activation after stimulation. When inhibitors of PKC are present, Ras activation is attenuated, and this attenuation correlates with an inhibition of RasGRP3 phosphorylation. RasGRP3 is phosphorylated in vitro by PKC-theta and PKC-beta2. When ectopically coexpressed in HEK-293 cells, a dominant-activated mutant of PKC-theta phosphorylates RasGRP3 and enhances Ras-Erk signaling. These results provide the first indication for a functional interaction between a RasGRP family member and a dissimilar DAG binding protein. A convergent DAG signaling system could be important in fine-tuning Ras signaling during B-cell development or during the humoral immune response.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2002-11-3621DOI Listing

Publication Analysis

Top Keywords

dag signaling
12
rasgrp3
8
phosphorylation rasgrp3
8
rasgrp family
8
rasgrp3 phosphorylated
8
ras activation
8
dag
6
signaling
5
integration dag
4
signaling systems
4

Similar Publications

Salt stress severely affects the growth and development of tomato. Strigolactones (SLs) and DNA methylation have been shown to be involved in the growth and development and response to salt stress in tomato. However, the regulation of SLs on DNA methylation in tomato under salt stress remains unclear.

View Article and Find Full Text PDF

Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.

View Article and Find Full Text PDF

Endurance exercise is widely recognized for its role in mitigating insulin resistance, yet the precise mechanisms remain unclear. In this Classics in Diabetes article, we revisit the article by Amati et al., "Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance: Another Paradox in Endurance-Trained Athletes?" Published in the October 2011 issue of Diabetes, this article was among the first to highlight the nuanced roles of exercise-induced changes in bioactive lipids such as ceramide and diacylglycerol (DAG) in insulin signaling.

View Article and Find Full Text PDF

Rolling bearings, as critical components of rotating machinery, significantly influence equipment reliability and operational efficiency. Accurate fault diagnosis is therefore crucial for maintaining industrial production safety and continuity. This paper presents a new fault diagnosis method based on FCEEMD multi-complexity low-dimensional features and directed acyclic graph LSTSVM.

View Article and Find Full Text PDF

Phosphatidic Acid Signaling in Modulating Plant Reproduction and Architecture.

Plant Commun

December 2024

Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA. Electronic address:

Article Synopsis
  • Phosphatidic acid (PA) is a type of signaling lipid in plants that plays a crucial role in responding to environmental stresses and regulating key biological processes.
  • Research on mutants lacking PA's metabolizing enzymes and various analytical techniques has shown that PA is essential in various reproductive functions, including pollen tube development and seed formation.
  • The study will review these findings to better understand how PA influences plant reproduction and structure, while also suggesting areas for future research to further clarify its mechanisms of action.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!