An investigation into the role of calcium in the modulation of rat synaptosomal D-[3H]aspartate transport by docosahexaenoic acid.

Brain Res

Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.

Published: May 2003

The effect of the polyunsaturated fatty acid cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) on the high-affinity, sodium-dependent uptake of D-[3H]aspartate into purified rat brain synaptosomes was examined. Incubation of the synaptosomes with 20 microM DHA caused over 50% inhibition of the maximum velocity (V(max)) of D-[3H]aspartate transport. This inhibition was significantly potentiated by pre-exposure of the synaptosomes to the fatty acid for 10 min prior to the start of the transport assay. Less highly unsaturated fatty acids such as arachidonic acid (cis-5,8,11,14-eicosatetraenoic acid), linolenic acid (cis-9,12,15-octadecatrienoic acid) and oleic acid (cis-9-octadecenoic acid) were significantly less potent than DHA. Removal of extracellular calcium, or reduction of the intracellular calcium concentration using the intracellular calcium chelator BAPTA/AM (10 microM), did not reduce the inhibition caused by DHA. On the other hand, an increase in the concentration of intracellular calcium mediated by thapsigargin (25 microM) or the calcium ionophore A23187 (10 or 100 nM) led to a reduction in the rate of D-[3H]aspartate transport in the absence of DHA. The CaM kinase II inhibitor, KN-93, reduced D-[3H]aspartate uptake independently of whether DHA was also present, but had no effect on the inhibition of D-[3H]aspartate uptake by either A23187 or thapsigargin. We conclude that whereas DHA inhibits synaptosomal D-[3H]aspartate uptake in a calcium-independent manner, a calcium-based mechanism exists that can also modulate glutamate transporter activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(03)02565-4DOI Listing

Publication Analysis

Top Keywords

d-[3h]aspartate transport
12
intracellular calcium
12
d-[3h]aspartate uptake
12
acid
10
synaptosomal d-[3h]aspartate
8
fatty acid
8
concentration intracellular
8
d-[3h]aspartate
7
dha
7
calcium
6

Similar Publications

The autoantibodies against the NR1 subunit are well known in the pathomechanism of NMDAR encephalitis. The dysfunction of the NR2 subunit could be a critical factor in this neurological disorder due to its important role in the postsynaptic pathways that direct synaptic plasticity. We report a case of paraneoplastic anti-NMDAR encephalitis presented alongside very severe illness.

View Article and Find Full Text PDF

Background: Anti-NMDA receptor encephalitis is an autoimmune, antibody-mediated inflammatory disease of the brain characterized by the presence of IgG antibodies targeting the excitatory N-methyl-D-aspartate receptor (NMDAR). Previous research has established that the neonatal Fc receptor (FcRn) regulates the transport and circulation of immunoglobulins (IgG). Efgartigimod, an FcRn antagonist, has been shown to enhance patient outcomes by promoting IgG clearance, and it has exhibited substantial clinical efficacy and tolerability in the treatment of myasthenia gravis.

View Article and Find Full Text PDF

Action of GABAB receptor on local network oscillation in somatosensory cortex of oral part: focusing on NMDA receptor.

J Physiol Sci

January 2025

Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8504, Tokushima, Japan. Electronic address:

The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABA receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application.

View Article and Find Full Text PDF

Neuropathic pain, caused by nerve damage, greatly affects quality of life. Recent research proposes modulating brain activity, particularly through electrical stimulation of the insular cortex (IC), as a treatment option. This study aimed to understand how IC stimulation (ICS) affects pain modulation.

View Article and Find Full Text PDF

Thrombin-induced kynurenine 3-monooxygenase causes variations in the kynurenine pathway, leading to neurological deficits in a murine intracerebral hemorrhage model.

J Pharmacol Sci

February 2025

Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.

The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!