Evaluating the effects of enhanced processivity and metal ions on translesion DNA replication catalyzed by the bacteriophage T4 DNA polymerase.

J Mol Biol

Department of Pharmacology and the Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, W348 SOM, 10900 Euclid Avenue, Cleveland, OH 44106, USA.

Published: May 2003

The fidelity of DNA replication is achieved in a multiplicative process encompassing nucleobase selection and insertion, removal of misinserted nucleotides by exonuclease activity, and enzyme dissociation from primer/templates that are misaligned due to mispairing. In this study, we have evaluated the effect of altering these kinetic processes on the dynamics of translesion DNA replication using the bacteriophage T4 replication apparatus as a model system. The effect of enhancing the processivity of the T4 DNA polymerase, gp43, on translesion DNA replication was evaluated using a defined in vitro assay system. While the T4 replicase (gp43 in complex with gp45) can perform efficient, processive replication using unmodified DNA, the T4 replicase cannot extend beyond an abasic site. This indicates that enhancing the processivity of gp43 does not increase unambiguously its ability to perform translesion DNA replication. Surprisingly, the replicase composed of an exonuclease-deficient mutant of gp43 was unable to extend beyond the abasic DNA lesion, thus indicating that molecular processes involved in DNA polymerization activity play the predominant role in preventing extension beyond the non-coding DNA lesion. Although neither T4 replicase complex could extend beyond the lesion, there were measurable differences in the stability of each complex at the DNA lesion. Specifically, the exonuclease-deficient replicase dissociates at a rate constant, k(off), of 1.1s(-1) while the wild-type replicase remains more stably associated at the site of DNA damage by virtue of a slower measured rate constant (k(off) 0.009s(-1)). The increased lifetime of the wild-type replicase suggests that idle turnover, the partitioning of the replicase from its polymerase to its exonuclease active site, may play an important role in maintaining fidelity. Further attempts to perturb the fidelity of the T4 replicase by substituting Mn(2+) for Mg(2+) did not significantly enhance DNA synthesis beyond the abasic DNA lesion. The results of these studies are interpreted with respect to current structural information of gp43 alone and complexed with gp45.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-2836(03)00370-xDOI Listing

Publication Analysis

Top Keywords

dna replication
20
translesion dna
16
dna lesion
16
dna
15
replicase
9
dna polymerase
8
enhancing processivity
8
extend abasic
8
abasic dna
8
rate constant
8

Similar Publications

Background: Psychosis (broadly delusions and hallucinations) has a cumulative disease prevalence of around 40% in Alzheimer's disease (AD). The epigenomic, genomic, and neuropathological data provide powerful evidence that AD+P has a distinct neurobiological profile. Here, we used the weighted gene co-expression network analysis (WGCNA) method to investigate DNA methylation associated with AD+P in the dorsolateral prefrontal cortex of 153 post-mortem brain samples.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is neuropathologically characterized by amyloid-β (Aβ) plaques and tau neurofibrillary tangles often quantified by Thal phase and Braak stage, respectively. Aβ also frequently deposits in the cerebrovasculature with severity categorized by a cerebral amyloid angiopathy (CAA) score. These and related measures often show high variability within AD suggesting distinct underlying mechanisms.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.

Background: Alzheimer's disease (AD) is a heterogenous disease with a strong heritability. Genetic studies are of irreplaceable value in elucidating the mechanisms that underly this disease. The classical genome-wide association studies (GWAS) rely on ever-increasing sample sizes and utilize clinical AD diagnosis to investigate genetic risk.

View Article and Find Full Text PDF

Small molecules targeting the eubacterial β-sliding clamp discovered by combined and screening approaches.

J Enzyme Inhib Med Chem

December 2025

Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.

Antibiotic resistance stands as the foremost post-pandemic threat to public health. The urgent need for new, effective antibacterial treatments is evident. Protein-protein interactions (PPIs), owing to their pivotal role in microbial physiology, emerge as novel and attractive targets.

View Article and Find Full Text PDF

Knockdown of RFC3 enhances the sensitivity of colon cancer cells to oxaliplatin by inducing ferroptosis.

Fundam Clin Pharmacol

February 2025

Department Oncology Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an People Hospital, Zhejiang, China.

Background: The development of resistance to oxaliplatin is a multifaceted process, often involving modifications in drug transport, DNA repair mechanisms, and the ability of cells to evade drug-induced apoptosis.

Objective: To evaluate whether knocking down RFC3 promotes the sensitivity of colorectal cancer (CRC) cells to oxaliplatin, potentially offering a new approach to combat drug resistance.

Methods: siRNA-mediated knockdown of RFC3 was employed in colorectal cancer cell lines to assess the impact on oxaliplatin responsiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!