Fractalkine (also known as CX3CL1), a CX3C chemokine, activates and attracts monocytes/macrophages to the site of injury/inflammation. It binds to CX3C receptor 1 (CX3CR1), a pertussis toxin-sensitive G-protein-coupled receptor. In smooth muscle cells (SMCs), fractalkine is induced by proinflammatory cytokines [tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma)], which may mediate monocyte adhesion to SMCs. However, the mechanisms underlying its induction are unknown. In addition, it is unlear whether SMCs express CX3CR1. TNF-alpha activated nuclear factor kappaB (NF-kappaB) and induced fractalkine and CX3CR1 expression in a time-dependent manner in rat aortic SMCs. Transient transfections with dominant-negative (dn) inhibitory kappaB (IkappaB)-alpha, dnIkappaB-beta, dnIkappaB kinase (IKK)-gamma, kinase-dead (kd) NF-kappaB-inducing kinase (NIK) and kdIKK-beta, or pretreatment with wortmannin, Akt inhibitor, pyrrolidinecarbodithioc acid ammonium salt ('PDTC') or MG-132, significantly attenuated TNF-alpha-induced fractalkine and CX3CR1 expression. Furthermore, expression of dn TNF-alpha-receptor-associated factor 2 (TRAF2), but not dnTRAF6, inhibited TNF-alpha signal transduction. Pretreatment with pertussis toxin or neutralizing anti-CX3CR1 antibodies attenuated TNF-alpha-induced fractalkine expression, indicating that fractalkine autoregulation plays a role in TNF-alpha-induced sustained fractalkine expression. Fractalkine induced its own expression, via pertussis toxin-sensitive G-proteins, phosphoinositide 3-kinase (PI 3-kinase), phosphoinositide-dependent kinase 1 (PDK1), Akt, NIK, IKK and NF-kappaB activation, and induced SMC cell-cell adhesion and cellular proliferation. Taken together, our results demonstrate that TNF-alpha induces the expression of fractalkine and CX3CR1 in rat aortic SMCs and that this induction is mediated by NF-kappaB activation. We also show that fractalkine induces its own expression, which is mediated by the PI 3-kinase/PDK1/Akt/NIK/IKK/NF-kappaB signalling pathway. More importantly, fractalkine increased cell-cell adhesion and aortic SMC proliferation, indicating a role in initiation and progression of atherosclerotic vascular disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223517PMC
http://dx.doi.org/10.1042/BJ20030207DOI Listing

Publication Analysis

Top Keywords

fractalkine
12
fractalkine cx3cr1
12
fractalkine cx3cl1
8
nuclear factor
8
factor kappab
8
smooth muscle
8
pertussis toxin-sensitive
8
fractalkine induced
8
expression
8
cx3cr1 expression
8

Similar Publications

Distinct Ocular Surface Microbiome in Keratoconus Patients Correlate With Local Immune Dysregulation.

Invest Ophthalmol Vis Sci

January 2025

GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India.

Purpose: Keratoconus (KC) is characterized by irregular astigmatism along with corneal stromal weakness and is associated with altered immune status. Tissue resident microbiomes are known to influence the immune status in other organs, but such a nexus has not been described in ocular conditions. Therefore, we examined the ocular surface microbiome of patients with KC and correlated it to the immune cell and tear molecular factor profiles.

View Article and Find Full Text PDF

The chemokine CX3CL1 promotes intraperitoneal tumour growth despite enhanced T-cell recruitment in ovarian cancer.

Neoplasia

January 2025

Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany. Electronic address:

T-cell recruiting chemokines are required for a successful immune intervention in ovarian cancer, and also for the efficacy of modern anticancer agents such as PARP inhibitors. The chemokine CX3CL1 recruits tumour-suppressive T-cells into solid tumours, but also mediates cell-cell adhesions, e.g.

View Article and Find Full Text PDF

Evidence of Inflammatory Network Disruption in Chronic Venous Disease: An Analysis of Circulating Cytokines and Chemokines.

Biomedicines

January 2025

Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain.

Chronic venous disease (CVD) comprises a set of vascular disorders that affect the venous system with important local and systemic repercussions. A growing body of evidence displays the relationship between suffering from CVD and a marked deregulation of the immune inflammatory system. In this sense, the previous literature has reported some significant changes in the level of various circulating inflammatory parameters in these patients.

View Article and Find Full Text PDF

The protease, a disintegrin and metalloproteinase with thrombospondin type 1 motif member 13 (ADAMTS13), known to cleave only the von Willebrand factor (VWF), has powerful regulatory effects on microvascular platelet adhesion, thrombosis, inflammation, and endothelial dysfunction. We study the protection against diabetes-induced retinal injury in experimental rats by supplementation with recombinant ADAMTS13. We compare human epiretinal membranes and vitreous samples from nondiabetic subjects and patients with proliferative diabetic retinopathy (PDR) and extend in vitro analyses with the use of various immunodetection and spectrofluorimetric methods on rat retina and human retinal glial and endothelial cell cultures.

View Article and Find Full Text PDF

Background: The natural killer (NK) activity of peripheral blood mononuclear cells (PBMCs) is a crucial defense against the onset and spread of cancer. Studies have shown that patients with reduced NK activity are more susceptible to cancer, and NK activity tends to decrease due to cancer-induced immune suppression. Enhancing the natural cytotoxicity of PBMCs remains a significant task in cancer research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!