Presence of free D-amino acids in microalgae.

Biosci Biotechnol Biochem

School of Fisheries Sciences, Kitasato University, Ofunato, Iwate 022-0101, Japan.

Published: February 2003

Several species of microalgae (phytoplankton), 4 species of freshwater algae and 4 species of marine diatoms, were cultured germ-free in the laboratory. The presence of free D-amino acids was verified in these species by a reversed-phase HPLC analysis. D-Aspartate was detected in all the microalgae examined, but D-alanine was only present in the marine diatoms. The D-amino acid content in Asterionella sp. of the marine diatoms increased from the exponential phase to the stationary phase and then decreased to the phase of decline.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.67.388DOI Listing

Publication Analysis

Top Keywords

marine diatoms
12
presence free
8
free d-amino
8
d-amino acids
8
acids microalgae
4
species
4
microalgae species
4
species microalgae
4
microalgae phytoplankton
4
phytoplankton species
4

Similar Publications

Dramatic effect of extreme rainfall event and storm on microbial community dynamics in a subtropical coastal region.

Sci Total Environ

January 2025

Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 202-24, Taiwan; Doctoral Degree Program in Ocean Resource and Environmental Changes, National Taiwan Ocean University, Keelung 202-24, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202-24, Taiwan. Electronic address:

Extreme weather events, such as heavy rainfall and typhoons, are becoming more frequent due to climate change and can significantly impact coastal microbial communities. This study examines the short-term alterations in microbial food webs-viruses, bacteria, picophytoplankton, nanoflagellates, ciliates, and diatom-following Typhoon Krathon in Taiwan's coastal waters in October 2024. Daily in situ sampling revealed a significant post-typhoon increased in viral, nanoflagellate, and Synechococcus spp.

View Article and Find Full Text PDF

Settling aggregates transport organic matter from the ocean surface to the deep sea and seafloor. Though plankton communities impact carbon export, how specific organisms and their interactions affect export efficiency is unknown. Looking at 15 years of eDNA sequences (18S-V4) from settling and sedimented organic matter in the Fram Strait, here we observe that most phylogenetic groups were transferred from pelagic to benthic ecosystems.

View Article and Find Full Text PDF

Metabarcoding reveals high species diversity of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters, a typical subtropical region.

Mar Pollut Bull

January 2025

Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Marine Pollution, Hong Kong, China. Electronic address:

Chaetoceros, Pseudo-nitzschia, and Thalassiosira are ecologically important genera which formed blooms frequently in Hong Kong coastal waters in past decades. However, species identification based on microscopic observation for diatoms in these genera is difficult. In this study, we investigated species diversity of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters using metabarcoding approach.

View Article and Find Full Text PDF

Background: Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum, focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes.

View Article and Find Full Text PDF

Introducing PES porous membrane to establish bionic autocrine channels: A lubricating, anti-wear antifouling coating.

Mar Pollut Bull

January 2025

Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, PR China; Dalian Key Laboratory of Internal Combustion Engine Tribology and Reliability Engineering, Dalian 116026, PR China. Electronic address:

As a global challenge, marine biofouling is causing serious economic losses and adverse ecological impacts. In recent years, a variety of promising and environmentally friendly anti-fouling strategies have emerged, among which the excellent anti-fouling performance of bionic autocrine coatings has been recognized. However, bionic autocrine coatings still suffer from uncontrollable secretion behavior, poor mechanical stability, and poor abrasion resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!