Osteoclast formation in the mouse coculture assay.

Methods Mol Med

Bone Research Group, Department of Medicine and Therapeutics, University of Aberdeen Medical School, Aberdeen, UK.

Published: May 2003

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59259-366-6:145DOI Listing

Publication Analysis

Top Keywords

osteoclast formation
4
formation mouse
4
mouse coculture
4
coculture assay
4
osteoclast
1
mouse
1
coculture
1
assay
1

Similar Publications

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

Postmenopausal osteoporosis (PMOP) is a metabolic bone disease driven by estrogen deficiency, primarily manifesting as reduced bone mass and heightened fracture risk. Its development is intricately linked to the balance between Th17 and Treg cells. Recent studies have highlighted the significant role of gut homeostasis in PMOP.

View Article and Find Full Text PDF
Article Synopsis
  • The article DOI: 10.1016/j.jot.2024.06.010 has been corrected for accuracy.
  • This correction ensures that readers are accessing the most reliable information.
  • It reflects ongoing efforts to maintain academic integrity and clarity in published research.
View Article and Find Full Text PDF

Differential Regulatory Effects of Probiotics on Bone Metabolism by the Status of Bone Health and Delivery Route.

Probiotics Antimicrob Proteins

December 2024

Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.

Probiotics are known to have favorable effects on human health. Nevertheless, probiotics are not always beneficial and can cause unintended adverse effects such as bacteremia and/or inflammation in immunocompromised patients. In the present study, we investigated the effects of probiotics on the regulation of bone metabolism under different health conditions and delivery routes.

View Article and Find Full Text PDF

Exploring the Effects of Zingerone on Differentiation and Signalling Pathways in Bone Cell Lines.

Metabolites

December 2024

Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa.

Objective: Ensuring adequate bone health is crucial for preventing conditions such as osteoporosis and fractures. Zingerone, a phytonutrient isolated from cooked ginger, has gained attention for its potential benefits in bone health. This study evaluated the osteoprotective potential of zingerone and its effects on differentiation and signalling pathways using SAOS-2 osteosarcoma and RAW264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!