AI Article Synopsis

  • The study investigates how the embryo interacts with the endometrium during the implantation process by comparing gene expression in different phases of the menstrual cycle.
  • Researchers analyzed tissue samples from the same fertile woman at two points (LH+2 and LH+7) and identified 211 genes whose expression significantly changed, unveiling both known and novel genes related to endometrial receptivity.
  • The study's validation showed that specific genes, like GPx-3, claudin-4, and SLC1A1, exhibit unique patterns of expression during the menstrual cycle, emphasizing the intricate mechanisms involved in preparing the endometrium for implantation.

Article Abstract

In humans, embryonic implantation and reproduction depends on the interaction of the embryo with the receptive endometrium. To gain a global molecular understanding of human endometrial receptivity, we compared gene expression profiles of pre-receptive (day LH+2) versus receptive (LH+7) endometria obtained from the same fertile woman (n = 5) in the same menstrual cycle in five independent experiments. Biopsies were analysed using the Affymetrix HG-U95A array, a DNA chip containing approximately 12,000 genes. Using the pre-defined criteria of a fold change >/=3 in at least four out of five women, we identified 211 regulated genes. Of these, 153 were up-regulated at LH+7 versus LH+2, whereas 58 were down-regulated. Amongst these 211 regulated genes, we identified genes that were known to play a role in the development of a receptive endometrium, and genes for which a role in endometrial receptivity, or even endometrial expression, has not been previously described. Validation of array data was accomplished by mRNA quantification by real time quantitative fluorescent PCR (Q-PCR) of three up-regulated [glutathione peroxidase 3 (GPx-3), claudin 4 (claudin-4) and solute carrier family 1 member 1 (SLC1A1)] genes in independent LH+2 versus LH+7 endometrial samples from fertile women (n = 3) and the three up-regulated genes throughout the menstrual cycle (n = 15). Human claudin-4 peaks specifically during the implantation window, whereas GPx-3 and SLC1A1 showed highest expression in the late secretory phase. In-situ hybridization (ISH) experiments showed that GPx-3 and SLC1A1 expression was restricted to glandular and luminal epithelial cells during the mid- and late luteal phase. The present work adds new and important data in this field, and highlights the complexity of studying endometrial receptivity even using global gene-expression analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molehr/gag037DOI Listing

Publication Analysis

Top Keywords

endometrial receptivity
16
lh+2 versus
12
gene expression
8
human endometrial
8
versus lh+7
8
receptive endometrium
8
menstrual cycle
8
211 regulated
8
regulated genes
8
three up-regulated
8

Similar Publications

Background: One potential cause of implantation failure is abnormal endometrial receptivity, and how to objectively evaluate endometrial receptivity has been a matter of great concern. Endometrial receptivity analysis (ERA), a next-generation sequencing-based test that assesses endometrial gene expression, may be valuable in predicting endometrial receptivity, but whether ERA improves pregnancy outcomes in patients with recurrent implantation failure (RIF) is currently controversial. The purpose of this study was to investigate the effect of ERA on pregnancy outcomes in patients with RIF.

View Article and Find Full Text PDF

Endometrial injury caused by repeated uterine procedures, infections, inflammation, or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration, thereby diminishing endometrial receptivity and evidently lowering the live birth, clinical pregnancy, and embryo implantation rates. Currently, safe and effective clinical treatment methods or gene-targeted therapies are unavailable, especially for severe endometrial injury. Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection, rapid proliferation, low immunogenicity, and tumorigenicity, along with their involvement in regulating angiogenesis, immune response, cell apoptosis and proliferation, inflammatory response, and fibrosis, Therefore, these cells and vesicles hold broad potential for application in endometrial repair.

View Article and Find Full Text PDF

Human embryo implantation: The complex interplay between endometrial receptivity and the microbiome.

J Reprod Immunol

January 2025

Chengdu Fifth People's Hospital, (School of Medical and Life Sciences/Affiliated Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine), Chengdu, China. Electronic address:

The endometrial and vaginal microbiota have co-evolved with the reproductive tract and play a key role in both health and disease. However, the difference between endometrial and vaginal microbiota, as well as their association with reproductive outcomes in women undergoing frozen embryo transfer, remains unclear. 120 women who underwent in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) and whole embryo freezing were enrolled.

View Article and Find Full Text PDF

Hypothyroidism causes ovarian dysfunction and infertility in women and animals and impairs the hypothalamic expression of kisspeptin (Kp). However, kisspeptin is also expressed in the genital system, and the lack of the Kp receptor (Kiss1r) in the uterus is linked to reduced implantation rates. This study investigated the impact of hypothyroidism on the uterine expression of Kp and Kiss1r in female rats throughout the estrous cycle and the associated changes in uterine activity modulators.

View Article and Find Full Text PDF

: Autologous platelet-rich plasma (PRP) transfusions are a relatively new treatment method used in different fields of medicine, including the field of reproductive medicine. One of the applications of these concentrated platelet infusions is the treatment of endometrial receptivity, which is a key factor for embryo implantation. There are implications that PRP infusions can lead to increased endometrial thickness, endometrial receptivity, and significantly elevated clinical pregnancy rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!