Molecular mechanism of serial VH gene replacement.

Ann N Y Acad Sci

Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.

Published: April 2003

The molecular mechanism of serial VH replacement was analyzed using a human B cell line, EU12, that undergoes continuous spontaneous differentiation from pro-B to pre-B and then to B cell stage. In earlier studies, we found that this cell line undergoes intraclonal V(D)J diversification. Analysis of the IgH gene sequences in EU12 cells predicted the occurrence of serial VH replacement involving the cryptic recombination signal sequences (cRSS) embedded within framework 3 regions and concurrent extension of the CDR3 region. Detection of double-stranded DNA breaks at the cRSS site and different VH replacement excision circles confirm the ongoing nature of this diversification process in the EU12 cells. In vitro binding and cleavage assays using recombinant RAG-1 and RAG-2 proteins further validated the cRSS participation in this RAG-mediated recombination process. Serial VH replacements may represent an additional mechanism for diversification of the primary B cell repertoire.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2003.tb06060.xDOI Listing

Publication Analysis

Top Keywords

molecular mechanism
8
mechanism serial
8
serial replacement
8
eu12 cells
8
serial
4
serial gene
4
replacement
4
gene replacement
4
replacement molecular
4
replacement analyzed
4

Similar Publications

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Role of Ciliary Neurotrophic Factor in Angiotensin II-Induced Hypertension.

Hypertension

January 2025

Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (S.A.P., I.Q., D. Arifaj, M.K., D. Argov, L.C.R., J.S.).

Background: Ciliary neurotrophic factor (CNTF), mainly known for its neuroprotective properties, belongs to the IL-6 (interleukin-6) cytokine family. In contrast to IL-6, the effects of CNTF on the vasculature have not been explored. Here, we examined the role of CNTF in AngII (angiotensin II)-induced hypertension.

View Article and Find Full Text PDF

The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments.

View Article and Find Full Text PDF

This study aims to reveal the potential molecular mechanisms of modified Gegen Qinlian decoction (MGQD) in relieving ulcerative colitis (UC). C57BL/6J mice were used to establish experimental colitis via dextran sodium sulfate (DSS). Body weight, disease activity index (DAI), spleen weight, colon length, and histopathologic features were measured to evaluate the therapeutic effects of MGQD on mice with UC.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most prevalent and deadly malignancies worldwide. Recently, ferroptosis, a novel form of regulated cell death characterized by iron dependency and lipid peroxidation, has garnered significant attention from researchers. The mechanisms underlying ferroptosis, including intracellular iron levels, lipid peroxidation, and antioxidant system regulation, offer new insights into cancer treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!