Technological and conceptual breakthroughs have led to more serious consideration of the cerebellum as an essential element in cognition. Recent studies show the lateral cerebellum, seat of the neocerebellum, to be most active in cognitive tasks. An examination of the relative volumes of the cerebellar hemispheres in anthropoids would reveal whether some groups show greater neocerebellar development through hemispheric expansion beyond expected allometry, implying a greater contribution of the lateral hemispheres to cognition. This study expands the existing data on primate brain and brain part volumes by incorporating data from both magnetic resonance scans and histological sections for a total sample size of 97 specimens, including 42 apes, 14 humans and 41 monkeys. The resulting volumes of whole brain, cerebellum, vermis, and hemisphere enable a reliable linear regression contrast between hominoids and monkeys, and demonstrate a striking increase in the lateral cerebellum in hominoids. The uniformity of the grade shift suggests that this increase took place in the common ancestor to the hominoids. The importance of the neocerebellum in visual-spatial skills, planning of complex movements, procedural learning, attention switching, and sensory discrimination in manipulation would facilitate the adaptation of these early hominoids to frugivory and suspensory feeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0047-2484(03)00028-9 | DOI Listing |
Front Vet Sci
January 2025
Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.
The current study performed a comprehensive assessment of blood supply in the cerebellum of dromedary camels. To the best of our knowledge, this study is the first to provide detailed information about the origins, routes, and complicated patterns of branching in the rostral and caudal cerebellar arteries of dromedary camels. In total, 55 heads from male dromedary camels aged 2-6 years were analyzed using advanced casting techniques.
View Article and Find Full Text PDFNeurol Genet
February 2025
University of Utah, Salt Lake City.
Spinocerebellar ataxias (SCAs) are dominantly inherited diseases that lead to neurodegeneration in the cerebellum and other parts of the nervous system. This review examines the progress that has been made in SCA2 from its initial clinical description to discovery of DNA CAG-repeat expansions in the gene. repeat alleles cover the range from recessive and dominant mendelian alleles to risk alleles for amyotrophic lateral sclerosis.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
Deep brain stimulation (DBS) for essential tremor is remarkably effective, leading to over 80% reduction in standardized tremor ratings. However, for certain types of tremor, such as those accompanied by ataxia or dystonia, conventional DBS targets have shown poor efficacy. Various rationales for using cerebellar DBS stimulation to treat tremor have been advanced, but the varied approaches leave many questions unanswered: which anatomic target, stimulation settings, and indications seem most promising for this emerging approach.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
Lower back pain comprises the majority of the disease burden of patients with ankylosing spondylitis (AS), while the alterations of the large-scale brain networks could be implicated in the neuropathophysiology of pain. The frontoparietal network (FPN) is known as a pain modulation hub, with key nodes dorsolateral prefrontal cortex (dlPFC) and ventrolateral prefrontal cortex (vlPFC) participating in the pain modulation and reappraisal process. In this study, we adopted the analytical approaches of independent component analysis (ICA) and seed-based correlation analysis (SCA) to examine the resting-state functional connectivity (rsFC) of the large-scale brain networks, notably FPN, between 82 AS patients and 61 healthy controls (HCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!