Nitrosopropofol (2-6-diisopropyl-4-nitrosophenol) has dramatic consequences for respiration, ATP synthesis and the transmembrane potential of isolated rat liver mitochondria at concentrations at which propofol (2-6-diisopropylphenol) does not cause any apparent effects. These results correlate well with the observation that nitrosopropofol is also a stronger perturbing agent of phospholipid membranes. In this paper we verify the possible biological activity of different phenols and nitrosophenols on mitochondrial respiration. We then discuss their interactions with phospholipid liposomes, studied with differential scanning calorimetry, spin labelling techniques and UV-Vis spectrophotometry, in order to obtain information on drug distribution and the modifications they impose on lipid bilayer. The results of the experiments performed on mitochondria and model membranes prove an interesting correlation between the effects of the molecules on both systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0301-4622(02)00256-9DOI Listing

Publication Analysis

Top Keywords

phospholipid membranes
8
mitochondrial respiration
8
correlation fluidising
4
fluidising effects
4
effects phospholipid
4
membranes mitochondrial
4
respiration propofol
4
propofol p-nitrosophenol
4
p-nitrosophenol homologues
4
homologues nitrosopropofol
4

Similar Publications

Antimicrobial resistance (AMR) is a major cause of death worldwide. This urges the search for alternatives to antibiotics, and antimicrobial polymers hold promise due to their reduced susceptibility to AMR. The topology of such macromolecules has a strong impact on their activity, with bottlebrush architectures outperforming their linear counterparts significantly.

View Article and Find Full Text PDF

Guidelines for plasma membrane protein detection by surface biotinylation.

Mol Cells

December 2024

Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Woo Choo Lee Institute for Precision Drug Development, Seoul 03722, Republic of Korea. Electronic address:

Plasma membrane proteins are crucial for signal transduction, trafficking, and cell-cell interactions, all of which are vital for cell survival. These proteins, including G-protein coupled receptors (GPCRs), ion channels, transporters, and receptors, are key drug targets due to their central role in receiving and amplifying cellular signals. However, the isolation and purification of plasma membrane proteins pose significant challenges because of their integration with phospholipid bilayers and the small fraction of these proteins present in the plasma membrane.

View Article and Find Full Text PDF

LPCAT3 regulates the proliferation and metastasis of serous ovarian cancer by modulating arachidonic acid.

Transl Oncol

December 2024

Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China. Electronic address:

Background: Lysophosphatidylcholine acyltransferase 3 (LPCAT3) promotes ferroptosis through the incorporating polyunsaturated fatty acids into membrane phospholipids, however, its role in serous ovarian cancer remains unclear. Here explored cancer proliferation and metastasis after modulating LPCAP3.

Methods: LPCAT3 protein in ovarian cancer tissues was detected using bioinformatic and immunohistoche mical assays.

View Article and Find Full Text PDF

Cholesterol mediates the potential adverse influence of graphene quantum dots on placental lipid membrane model.

Sci Rep

December 2024

College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.

View Article and Find Full Text PDF

Background: Existing literature supports the association between atypical phospholipid antibodies - anti-phosphatidylserine/prothrombin antibodies (aPS/PT) and adverse pregnancy outcomes. This study aimed to investigate the relationship between aPS/PT and premature rupture of membranes (PROM).

Methods: A retrospective cohort study analysis was conducted on 408 pregnant women who had experienced at least one unexplained miscarriage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!