Highly potent propargylamine and allylamine inhibitors of bovine plasma amine oxidase.

Biochem Biophys Res Commun

Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.

Published: May 2003

Propargylamine was reported many years ago to be a mechanism-based inhibitor of bovine plasma amine oxidase (BPAO), though the potency was modest and allylamine was a substrate. Herein, selected 3-substituted propargylamines and allylamines were found to be potent time-dependent inactivators of BPAO, exhibiting IC(50) values of 2-13 microM at 30 degrees C, making them the most potent BPAO inhibitors reported to date. The most potent compound, trans-3-chloroallylamine, was previously found not to inhibit the flavin-dependent monoamine oxidase (the cis isomer did), and thus appears to be a highly selective inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-291x(03)00681-8DOI Listing

Publication Analysis

Top Keywords

bovine plasma
8
plasma amine
8
amine oxidase
8
highly potent
4
potent propargylamine
4
propargylamine allylamine
4
allylamine inhibitors
4
inhibitors bovine
4
oxidase propargylamine
4
propargylamine reported
4

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Loss of Affects m6A Modification but Not Semen Characteristics in Bull Spermatozoa.

Int J Mol Sci

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China.

N6-methyladenosine (m6A) modification is a key methylation modification involved in reproductive processes. gene editing (MT) in cattle is known to enhance muscle mass and productivity. However, the changes in m6A modification in MT bull sperm remain poorly understood.

View Article and Find Full Text PDF

The extent of endocrine changes in response to various levels of heat stress and subsequent recovery is not well understood. Two cohorts of 12 Black Angus steers were housed in climate-controlled rooms (CCR) and subjected to three thermal periods: PreChallenge (5 d), Challenge (7 d) and Recovery (5 d). PreChallenge and Recovery provided thermoneutral conditions.

View Article and Find Full Text PDF

In vitro sperm generation from immature mouse testicular tissue using plasma rich in growth factors.

Stem Cell Res Ther

January 2025

Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Background: Culture medium enriched with Knockout serum replacement (KSR) can produce in vitro mouse sperm, but it is inefficient, strain-specific and contains bovine products, which limits its use in the human clinic. The study aimed to optimize the culture medium for testicular tissue by using plasma rich in growth factors (PRGF) as a serum supplement, addressing the limitations of KSR.

Methods: Immature testicular tissues from NMRI mice were cultured for 14 days to identify the optimal PRGF concentration using histological analysis and tubular integrity scoring.

View Article and Find Full Text PDF

Hydroxyapatite, renowned for its biocompatibility and osteoconductive properties, plays a fundamental role in bone regeneration owing to its resemblance to natural bone mineral, thus offering considerable potential for advancing tissue engineering strategies. In this article, the innovative integration of silicon ions into biogenic (bovine-derived) hydroxyapatite (SiBHA) via a tailored sol-gel process is reported. The resultant SiBHA scaffolds exhibited an interconnected microporous structure with a total porosity of 70% and pore dimensions ranging from 120 to 650 µm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!