Epinephrine is known to be rapidly oxidized during sepsis. Ischemia and acidosis, which often accompany sepsis, are associated with the release of weakly bound cupric ions from plasma proteins. We investigated whether copper promotes oxidation of epinephrine at both physiological and acidic pH and whether D-Asp-D-Ala-D-His-D-Lys (D-DAHK), a human albumin (HSA) N-terminus synthetic peptide with a high affinity for cupric ions, attenuates this oxidation. Epinephrine alone [100 microM] or with CuCl(2) [10 microM], and with CuCl(2) [10 microM] and D-DAHK [20 microM] at pH 7.4, 7.0, 6.5, and 6.0 were incubated for 1h at 37 degrees C. Epinephrine oxidation was measured by the spectrophotometric quantification of its oxidation product, adrenochrome. We found that adrenochrome increased, suggesting copper-induced oxidation of epinephrine. At pH 7.4, 7.0, 6.5, and 6.0, adrenochrome increased by 47%, 53%, 24%, and 6% above baseline, respectively. D-DAHK attenuated the copper-induced oxidation of epinephrine to baseline levels. These in vitro results indicate that copper-induced epinephrine oxidation is greatest at the physiological pH 7.4 as well as in severe acidosis, pH 7.0, and that D-DAHK completely inhibits this oxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-291x(03)00667-3 | DOI Listing |
Andrology
January 2025
Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil.
Background: 6-Nitrodopamine (6-ND) released from rat vas deferens acts an endogenous modulator of vas deferens contractility.
Objectives: To investigate whether rat isolated seminal vesicles (RISV) releases 6-ND, the mechanisms involved in the release, and the modulatory role of 6-ND on tissue contractility.
Methods: Rat seminal vesicles were removed and placed in Krebs-Henseleit's solution at 37°C for 30 min, and an aliquot was used to analyze the concentrations of 6-ND, dopamine, noradrenaline, and adrenaline by liquid chromatography with tandem mass spectrometry (LC-MS/MS).
Resusc Plus
January 2025
Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada.
Background: Epinephrine is currently the only recommended cardio-resuscitative medication for use in neonatal cardiopulmonary resuscitation (CPR), as per consensus of science and treatment recommendations. An alternative medication, vasopressin, may be beneficial, however there is limited data regarding its effect on cardiac and brain tissue following recovery from neonatal CPR.
Aim: To compare the effects of vasopressin and epinephrine during resuscitation of asphyxiated post-transitional piglets on cardiac and brain tissue injury.
Int J Biol Macromol
December 2024
Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 38000, Pakistan. Electronic address:
This research work was designed to develop efficient Diosgenin (DGN) loaded biodegradable nanoparticles (DGN-NPs) for treating rheumatoid arthritis. The DGN-NPs were synthesized by ionic-gelation method using chitosan as a biodegradable polymer and in-vitro release study was performed followed by kinetics study. DGN-NPs had an average size of 290 nm, zeta potential of +11.
View Article and Find Full Text PDFJ Therm Biol
December 2024
Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
Prolonged heat exposure is suggested to improve glucose metabolism and fat oxidation, but no studies have addressed whether brief heat stimuli represent a viable, time-efficient, alternative approach. Consequently, we examined the ability of brief stimuli evoked by 45 °C water to improve glucose tolerance, insulin sensitivity, and fat oxidation in young, non-obese, males and females. Twenty-four participants completed fourteen 5-min sessions involving whole body passive heating in 45 °C water.
View Article and Find Full Text PDFFront Pharmacol
November 2024
Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
6-Nitrodopamine (6-ND) is the predominant catecholamine released from isolated vascular tissues in both mammals and reptiles, with its release being significantly reduced by the NO synthesis inhibitor, N-nitro-L-arginine methyl ester (L-NAME). The vasorelaxation induced by 6-ND is unaffected by either L-NAME or the soluble guanylate cyclase (sGC) inhibitor, ODQ, indicating an alternative mechanism of action. The vasorelaxant effect appears to be mediated through selective antagonism of dopamine D receptors rather than traditional nitric oxide (NO)-mediated pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!