Clinical translation of gene-based therapies for arthritis could be accelerated by vectors capable of efficient intra-articular gene delivery and long-term transgene expression. Previously, we have shown that lentiviral vectors transduce rat synovium efficiently in vivo. Here, we evaluated the functional capacity of transgene expression provided by lentiviral-mediated gene delivery to the joint. To do this, we measured the ability of a lentiviral vector containing the cDNA for human interleukin-1 receptor antagonist (LV-hIL-1Ra) to suppress intra-articular responses to IL-1beta. Groups of rats were injected in one knee with 5 x 10(7) infectious units of LV-IL-1Ra. After 24 h, a range of doses of fibroblasts (3 x 10(3), 10(4), 3 x 10(4), or 10(5) cells) genetically modified to overexpress IL-1beta was injected into both knees. Intra-articular delivery of LV-hIL-1Ra strongly prevented swelling in all treated knees, even in those receiving the greatest dose of IL-1beta(+) cells. Cellular infiltration, cartilage erosion, and invasiveness of inflamed synovium were effectively prevented in LV-hIL-1Ra-treated knees and were significantly inhibited in contralateral joints. Beneficial effects were also observed systemically in the lentivirus-treated animals. Interestingly, intra-articular expression of the IL-1Ra transgene was found to increase in relation to the number of IL-1beta(+) cells injected. Further experiments using GFP suggest this is due to the proliferation of cells, stably modified by the integrative lentivirus, in response to inflammatory stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1525-0016(03)00024-8 | DOI Listing |
Int J Biol Macromol
December 2024
Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:
Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.
View Article and Find Full Text PDFPlacenta
December 2024
Department of Pharmacology, Babcock University, Ilishan-Remo, Ogun, Nigeria; Centre for Advanced Medical Research and Biotechnology, Babcock University, Ilishan-Remo, Ogun, Nigeria.
Introduction: The genetic complexity of Plasmodium falciparum is contributory to the emergence of drug resistant-parasites. Intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) in malaria endemic settings is recommended by WHO. This study evaluated the prevalence of Plasmodium falciparum multidrug resistance-1 gene (Pfmdr-1), genetic diversity of merozoite surface proteins (msp-1, msp-2) and glutamate-rich protein (glurp) among pregnant women with sub-patent parasitaemia from southwest Nigeria.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea. Electronic address:
MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.
View Article and Find Full Text PDFCell Prolif
December 2024
Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
Background: Transgenic plants expressing proteins that target the eggs of the ubiquitous plant pest Bemisia tabaci (whitefly) could be an effective insecticide strategy. Two approaches for protein delivery are assessed using the mCherry reporter gene in transgenic tomato plants, while accommodating autofluorescence in both the plant, phloem-feeding whitefly and pedicle-attached eggs.
Results: Both transgenic strategies were segregated to homozygous genotype using digital PCR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!