A chemically generated mutant of Staphylococcus aureus RN4220, GC6668, was isolated that had a fourfold increase in resistance to vancomycin. This phenotype reverted back to susceptibility by insertional mutagenesis with Tn917. In a selected set of revertants, Tn917 insertion was mapped to a unique chromosomal region upstream of mprF, a recently described gene that determines staphylococcal resistance to several host defense peptides. The genetic linkage between the vancomycin susceptibility and Tn917 insertion was then confirmed by transduction backcrosses into both GC6668 and GISA isolates, MER-S12 and HT2002 0127. Northern blot analysis, insertional inactivation and complementation experiments showed that mprF mediates vancomycin susceptibility in S. aureus. The inactivation of mprF by Tn917 insertion in HT2002 0127 caused a significant increase in the binding of vancomycin to the cell membranes. This observation serves as a likely mechanism of the increased vancomycin susceptibility associated with mprF inactivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-4165(03)00028-x | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic. Electronic address:
Public transport represents a potential site for the transmission of resistant pathogens due to the rapid movement of large numbers of people. This study aimed to investigate the bacterial contamination of frequently touched surfaces in the public transport system operating in the proximity of the biggest Czech hospital during the coronavirus pandemic despite extensive cleaning and disinfection efforts. In June and September 2020, samples from the metro trains, ground transport and stationary objects were collected, enriched and cultured.
View Article and Find Full Text PDFCureus
December 2024
Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND.
Introduction Intestinal carriage of multidrug-resistant organisms (MDROs) in healthy populations could amplify resistant bacteria, which may increase the risk of infections by these bacteria in the community and in the hospital. This study investigated the prevalence of colonization of multidrug-resistant (MDR) bacteria in the intestines of healthy individuals in South India. Methods A prospective study was conducted for six months at a tertiary care teaching hospital.
View Article and Find Full Text PDFMikrobiyol Bul
October 2024
Çukurova University Faculty of Medicine, Department of Medical Microbiology, Adana, Türkiye.
Group B Streptococcus (GBS) or Streptococcus agalactiae is a pathogen that causes infections during pregnancy. The aim of this study was to investigate the antibiotic sensitivity profiles, capsule genotypes and biofilm forming capabilities of GBS isolates obtained from pregnant women . The study included 252 pregnant women who applied to Adana Gynecology and Children's Hospital between 2018 and 2023.
View Article and Find Full Text PDFAm J Infect Control
December 2024
Department of Microbiology, Vietnam National Children's Hospital, Hanoi, Vietnam.
Background: Neonatal sepsis is a leading cause of newborn mortality, particularly in low and middle-income countries. This study examines the bacterial etiologies and antibiotic resistance patterns of neonatal sepsis in a tertiary hospital in Vietnam.
Methods: A prospective cross-sectional study was conducted at National Children's Hospital, Hanoi, Vietnam from January 2021 to December 2022.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a leading pathogen causing severe endovascular infections. The prophage-encoded protein Gp05 has been identified as a critical virulence factor that contributes to MRSA persistence during vancomycin (VAN) treatment in an experimental endocarditis model. However, the underlining mechanisms driving this persistence phenotype remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!