Primate lentivirus (HIV and SIV) vpr accessory genes encode 12- to 14-kDa proteins which induce cell cycle arrest at the G2 phase of infected cells, preventing them from going through mitosis. Members of the HIV-2/SIVmac/SIVsmm group also encode a second closely related accessory protein called Vpx. Vpx and HIV Vpr are critical for virus replication in nondividing cells due to their participation in nuclear import of the preintegration complex. Caprine arthritis encephalitis virus (CAEV) and maedi visna virus are the natural lentiviruses of domestic goat and sheep, respectively, and their genomes do not carry vpr and vpx genes. In this study, we generated chimeric CAEV-based genomes carrying vpr and vpx genes from SIVmac239 and tested their ability to induce G2 cell cycle arrest in infected caprine cells. CAEV-pBSCAvpxvpr is the chimeric genome that was shown to be infectious and replication competent. Our data demonstrated that CAEV-pBSCAvpxvpr-infected goat synovial membrane cell monolayer developed more cytopathic effects and a high proportion of cells remained in the G2 phase of cell cycle. This G2 arrest was observed both at the early and at the late stages of infection, while minimal effect was observed with the parental CAEV-pBSCA. These results, described for the first time in mammalian cells other than those of primates, indicate that Vpr-induced G2 cell cycle arrest is not restricted to only primate cells. Thus, conservation of Vpx/Vpr protein functions in caprine cells suggests a possible role for these proteins in the virus life cycle and its ability to adapt to new hosts. The data presented here thus raise a pertinent question about the biological significance of the conservation of Vpr and Vpx functions in caprine cells despite the high phylogenic distance between primates and small ruminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0042-6822(03)00014-x | DOI Listing |
Reprod Domest Anim
December 2024
Animal Reproduction, Gynaecology and Obstetrics, Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, Haryana, India.
Bull fertility is a multi-factorial trait and is affected by many factors, such as nutrition, genetics, and epigenetics. Superior quality male germplasm with high genetic merit helps to improve the livestock production trait. To achieve the target of livestock production, the availability of superior male germplasm is a great concern.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
is one of the most common pathogens causing reproductive failure in ruminants (e.g., cattle and goats) worldwide.
View Article and Find Full Text PDFTheriogenology
December 2024
Department of Animal and Food Science, Veterinary Faculty, Autonomous University of Barcelona, 08193, Barcelona, Spain. Electronic address:
Oocyte-secreted factors (OSFs), such as BMP15 and GDF9, are soluble paracrine factors that drive cumulus cell differentiation and function, sustaining oocyte competence acquisition and embryo development. This study aimed to assess the effect of BMP15 and GDF9 on IVM medium of prepubertal goat oocytes. COCs were in vitro matured in absence (control group) or presence of 100 ng/mL of BMP15, GDF9, or both.
View Article and Find Full Text PDFCommun Biol
December 2024
CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
Unlike monogastric animals, ruminants exhibit significantly lower starch digestibility in the small intestine. A better understanding of the physiological mechanisms that regulate digestion patterns in ruminants could lead to an increased use of starch concentrates. Here we show more robust pancreatic exocrine function in adult goats (AG) than in neonatal goats (NG) by combining scRNA-seq and proteomic analysis.
View Article and Find Full Text PDFBMC Genomics
December 2024
Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
The establishment and maintenance of spermatogenesis is a complex process involving a vast of regulatory pathways. There is growing evidence revealing that long noncoding RNAs (lncRNA) play important roles in regulating testicular development and spermatogenesis in a stage-specific way. However, our understanding of how lncRNA regulates testicular development and spermatogenesis in black goats is quite limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!