Magnetite is the most important end member of iron corrosion products under reducing environment, which is the condition expected in a deep geological high level radioactive waste disposal. Nanocrystalline magnetite was synthesized in the laboratory and its physicochemical properties were analyzed in detail. The kinetics of the adsorption of U(VI) and the kinetics of the actinide reduction to a lower oxidation state, in presence of the oxide, were studied by means of batch sorption techniques and X-ray photoelectron spectroscopy (XPS) analysis. The results showed that the uranium sorption and reduction processes on the magnetite surface have very fast kinetics (hours), the reduction process being triggered by sorption. XPS measurements showed that the speciation of uranium at the surface does not show significant changes with time (from 1 day to 3 months), as well as the quantity of uranium detected at the surface. The surface speciation depended on the initial pH of the contact solution. Considering that the Eh of equilibrium between magnetite and the solution, under our experimental conditions, is slightly positive (50-100 mV), the uranium reduction would also be thermodynamically possible within the liquid phase. However, the kinetics of reduction in the liquid occur at a much slower rate which, in turn, has to depend on the attainment of the magnetite/solution equilibrium. The decrease of uranium in solution, observed after the uranyl adsorption stage, and particularly at acidic pH, is most probably due to the precipitation of U(IV) formed in the solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9797(02)00227-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!