Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, a comparative study involving measures from the theory of chaos, namely the short-term largest Lyapunov exponent, Shannon and Kullback-Leibler entropies from information theory, has been carried out in terms of their predictability of temporal lobe epileptic seizures. These three measures are estimated from electroencephalographic (EEG) recordings with sub-dural and in-depth electrodes from various brain locations in patients with temporal lobe epilepsy. Techniques from optimization theory are applied to select optimal sets of electrodes whose dynamics is then followed over time. Results from analysis of multiple seizures in two epileptic patients with these measures are presented and compared in terms of their ability to identify pre-ictal dynamical entrainment well ahead of seizure onset time.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!