The reeler gene (Reln(rl), formerly rl) product Reelin controls neuronal migration and positioning and thereby plays a key role in brain development. Mutation of Reln leads to widespread disruption of laminar cortical regions and ectopia in some brainstem nuclei. In the embryonic striatum of normal mice, a substantial expression of reelin mRNA has been documented; however, the anomalous positioning of neurons in the basal ganglia of reeler mice remains to be studied. We provide first evidence for a potential role of Reelin in the developmental formation of the substantia nigra. In reeler mutant mice lacking Reelin, dopaminergic neurons destined for the substantia nigra fail to migrate laterally and become anomalously clustered just lateral to the ventral tegmental area. Their axons appear to project to striatal patches forming "dopamine islands." Results from the normal mice show that, at the midembryonic stage, Reelin identified with CR-50 is highly concentrated in the ventral mesencephalon, where nigral dopaminergic neurons are in progress to migrate laterally to their eventual position of the adult brain. A combination of CR-50 labeling and anterograde axonal tracing provided evidence that embryonic striatal neurons may supply the ventral portion of the mesencephalon with Reelin through their axonal projections. We hypothesize that Reelin plays a role in the positioning of nigral dopaminergic neurons and that it can act as an environmental cue at a remote site far from its birthplace via a transaxonal delivery system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.10610 | DOI Listing |
Alzheimers Dement
December 2024
School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.
Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
MRC Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, United Kingdom.
Background: Accumulation of misfolded a-synuclein protein in intracellular inclusion bodies of dopaminergic neurons underlies the pathogenesis of synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA). Therefore, clearance of misfolded α-synuclein from dopaminergic neurons could in principle offer a an approach for modifying synucleinopathies, which currently remain untreatable.
Method: In this study, we employ the Affinity-directed PROtein Missile (AdPROM) system consisting of the substrate receptor of the CUL2-E3 ligase complex VHL and a nanobody selectively recognising the human α-synuclein protein RESULT: We demonstrate targeted degradation of endogenous α-synuclein from human cell lines with exquisite selectivity.
Nat Rev Neurosci
January 2025
Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
Transient changes in the firing of midbrain dopamine neurons have been closely tied to the unidimensional value-based prediction error contained in temporal difference reinforcement learning models. However, whereas an abundance of work has now shown how well dopamine responses conform to the predictions of this hypothesis, far fewer studies have challenged its implicit assumption that dopamine is not involved in learning value-neutral features of reward. Here, we review studies in rats and humans that put this assumption to the test, and which suggest that dopamine transients provide a much richer signal that incorporates information that goes beyond integrated value.
View Article and Find Full Text PDFJ Neurosci
January 2025
Carleton University, Neuroscience Department, Ottawa, ON, Canada,
Ghrelin enhances feeding by activating the growth hormone secretagogue receptor (GHSR). In the brain, GHSRs are expressed in regions responsible for regulating food motivation including the ventral tegmental area (VTA). Endogenous cannabinoids also promote food seeking behaviors through the cannabinoid receptor 1 type (CB-1Rs) in brain regions including the VTA.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
Parkinson's disease (PD) is the most prominent and highly prevalent chronic neuro-degenerative disease generally recognized by classical motor symptoms which are linked with genetic mutation, Lewy bodies, and subsequently selective loss of nigrostriatal dopaminergic neurons. The blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier protect the central nervous system against toxins and are the most significant barriers to effective brain drug delivery in managing Parkinsonism. In recent years, intranasal delivery has attracted remarkable attention for brain targeting as the drug can be administered to the brain directly from the nose employing the trigeminal and olfactory pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!