Platelet-derived growth factor (PDGF) is a chemotactic factor for fibroblasts that triggers actin cytoskeleton reorganization by increasing the level of GTP-Rac, the activated form of a small Rho family GTPase. GTP-Rac induces membrane ruffling and lamellipodium formation that are required for adhesion, migration and macropinocytosis, among other functions. We have shown that WIP interacts with members of the Wiskott-Aldrich syndrome protein family and is essential for filopodium formation regulated by Cdc42 GTPase. In this report, we show that WIP participates in the actin reorganization that leads to ruffle formation. WIP overexpression in murine fibroblasts (3T3 cells) enhances ruffle formation in response to PDGF stimulation, as shown by immunofluorescence and electron and video microscopy. More importantly, microinjection of anti-WIP antibody or absence of WIP in murine fibroblasts results in decreased ruffle formation in response to PDGF treatment. Finally, overexpression of a modified form of WIP lacking the actin-binding site blocks PDGF-induced membrane ruffling. These data suggest a role for WIP in actin reorganization to form PDGF-induced ruffles. This is the first in vivo evidence in mammalian cells for a function of WIP dependent on its ability to bind actin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.00433 | DOI Listing |
FASEB J
December 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a serious threat to human and animal health, and there is an urgent need to develop new therapeutic agents. In our in vivo study, ginsenoside Ro (Ro) reduced the mortality rate of S.
View Article and Find Full Text PDFPLoS One
December 2024
Pacific Northwest Research Institute, Seattle, Washington, United States of America.
Clonal communities of single celled organisms, such as bacterial or fungal colonies and biofilms, are spatially structured, with subdomains of cells experiencing differing environmental conditions. In the development of such communities, cell specialization is not only important to respond and adapt to the local environment but has the potential to increase the fitness of the clonal community through division of labor. Here, we examine colony development in a yeast strain (F13) that produces colonies with a highly structured "ruffled" phenotype in the colony periphery and an unstructured "smooth" phenotype in the colony center.
View Article and Find Full Text PDFJ Cell Sci
December 2024
Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
Tight junctions regulate epithelial barrier function and have been shown to be influenced by multiple classes of proteins. Apical integrins have been identified as potential regulators of epithelial barrier function; however, only indirect approaches have been used to measure integrin regulation of the epithelial barrier. Here, we used polymeric nanowires conjugated with anti-integrin β1 antibodies to specifically target apically localized integrins in either their closed or open conformation.
View Article and Find Full Text PDFPLoS Pathog
November 2024
Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Int J Mol Sci
October 2024
Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
Membrane ruffles are cell actin-based membrane protrusions that have distinct structural characteristics. Linear ruffles with columnar spike-like and veil-like structures assemble at the leading edge of cell membranes. Circular dorsal ruffles (CDRs) have no supporting columnar structures but their veil-like structures, connecting from end to end, present an enclosed ring-shaped circular outline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!