Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Latent semantic analysis (LSA) is a computational model of human knowledge representation that approximates semantic relatedness judgments. Two issues are discussed that researchers must attend to when evaluating the utility of LSA for predicting psychological phenomena. First, the role of semantic relatedness in the psychological process of interest must be understood. LSA indices of similarity should then be derived from this theoretical understanding. Second, the knowledge base (semantic space) from which similarity indices are generated must contain 'knowledge' that is appropriate to the task at hand. Proposed solutions are illustrated with data from an experiment in which LSA-based indices were generated from theoretical analysis of the processes involved in understanding two conflicting accounts of a historical event. These indices predict the complexity of subsequent student reasoning about the event, as well as hand-coded predictions generated from think-aloud protocols collected when students were reading the accounts of the event.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/bf03195494 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!