A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Use of latent semantic analysis for predicting psychological phenomena: two issues and proposed solutions. | LitMetric

Use of latent semantic analysis for predicting psychological phenomena: two issues and proposed solutions.

Behav Res Methods Instrum Comput

Psychology Department, Grand Valley State University, Allendale, Michigan 49401, USA.

Published: February 2003

Latent semantic analysis (LSA) is a computational model of human knowledge representation that approximates semantic relatedness judgments. Two issues are discussed that researchers must attend to when evaluating the utility of LSA for predicting psychological phenomena. First, the role of semantic relatedness in the psychological process of interest must be understood. LSA indices of similarity should then be derived from this theoretical understanding. Second, the knowledge base (semantic space) from which similarity indices are generated must contain 'knowledge' that is appropriate to the task at hand. Proposed solutions are illustrated with data from an experiment in which LSA-based indices were generated from theoretical analysis of the processes involved in understanding two conflicting accounts of a historical event. These indices predict the complexity of subsequent student reasoning about the event, as well as hand-coded predictions generated from think-aloud protocols collected when students were reading the accounts of the event.

Download full-text PDF

Source
http://dx.doi.org/10.3758/bf03195494DOI Listing

Publication Analysis

Top Keywords

latent semantic
8
semantic analysis
8
predicting psychological
8
psychological phenomena
8
proposed solutions
8
semantic relatedness
8
indices generated
8
analysis predicting
4
phenomena issues
4
issues proposed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!