Objective: Ischemic preconditioning (IPC) has been found to protect the myocardium in animal studies. However, clinical studies have been limited and the clinical effects of IPC are still uncertain. The purpose of this study was to assess whether IPC has any protective effect on the human myocardium during minimally invasive CABG (MIDCAB), by means of epicardial electrophysiological testing.

Method: Forty-five patients with left anterior descending artery disease who underwent a MIDCAB procedure were evaluated. In the present study, the electrical potentials which were not affected by cardio-pulmonary bypass or cardioplegia were measured. The ratio of longitudinal to transverse conduction velocity (phiL /phiT), and QT, JT dispersions were measured using plaque electrodes in the preischemic state, during a 5-minute coronary occlusion, during the subsequent 5-minute reperfusion, during 5- and 10-minute anastomosis periods, and after anastomosis.

Result: The phiL/phiT was 2.2 +/- 0.2 at baseline. Anisotropy was exaggerated during the 5-minute coronary occlusion (2.6 +/- 0.3). During anastomosis, conduction velocities were decreased, but showed no further deterioration (2.4 +/- 0.3, and 2.4 +/- 0.3, respectively). QT and JT dispersions were improved by reperfusion.

Conclusion: The effectiveness of IPC during the MIDCAB procedure was confirmed electrophysiologically. Anisotropy and dispersions were minimized after IPC, therefore IPC demonstrated antiarrhythmic protective effects on the human myocardium.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11748-003-0050-3DOI Listing

Publication Analysis

Top Keywords

ischemic preconditioning
8
minimally invasive
8
human myocardium
8
midcab procedure
8
5-minute coronary
8
coronary occlusion
8
ipc
6
myocardial ischemic
4
preconditioning minimally
4
invasive direct
4

Similar Publications

Objectives: Exercise as a non-pharmacological intervention can exert beneficial effects directly through exosomes crossing the blood-brain barrier and reduce apoptosis after cerebral ischaemia/reperfusion injury (CI/RI). miRNA-124 (miR-124) is present in exosomes and plays an important role in regulating cerebral neurological activity; however, the mechanism of the relationship between exercise and the activity of exosomes and apoptosis after CI/RI remains unclear. Therefore, the present study investigated the effects of exercise preconditioning on cerebral ischemia/reperfusion injury from the perspective of exosomal miR-124 and apoptosis.

View Article and Find Full Text PDF

Remote Ischemic Preconditioning (RIPC) is a therapy characterized by repeated bouts of limb ischemia and reperfusion. RIPC protects against ischemia-reperfusion injury (IRI), and preclinical studies suggest that this is mediated through release of endogenous opioids. We aimed to interrogate the role of endogenous opioids in RIPC-signaling in humans, using an arm model of IRI.

View Article and Find Full Text PDF

Purpose: We designed a study investigating the cardioprotective role of sleep apnea (SA) in patients with acute myocardial infarction (AMI), focusing on its association with infarct size and coronary collateral circulation.

Methods: We recruited adults with AMI, who underwent Level-III SA testing during hospitalization. Delayed-enhancement cardiac magnetic resonance (CMR) imaging was performed to quantify AMI size (percent-infarcted myocardium).

View Article and Find Full Text PDF

Introduction: Arterialized venous flap, like any other flap, will undergo an ischemic reperfusion injury during its transfer process. To overcome this, ischemic preconditioning can be done to provide protection and enhanced flap survival. One of the reliable parameters of flap survival is its temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!