This paper proposes the use of neural networks for individualizing the dosage of cyclosporine A (CyA) in patients who have undergone kidney transplantation. Since the dosing of CyA usually requires intensive therapeutic drug monitoring, the accurate prediction of CyA blood concentrations would decrease the monitoring frequency and, thus, improve clinical outcomes. Thirty-two patients and different factors were studied to obtain the models. Three kinds of networks (multilayer perceptron, finite impulse response (FIR) network, and Elman recurrent network) and the formation of neural-network ensembles are used in a scheme of two chained models where the blood concentration predicted by the first model constitutes an input to the dosage prediction model. This approach is designed to aid in the process of clinical decision making. The FIR network, yielding root-mean-square errors (RMSEs) of 52.80 ng/mL and mean errors (MEs) of 0.18 ng/mL in validation (10 patients) showed the best blood concentration predictions and a committee of trained networks improved the results (RMSE = 46.97 ng/mL, ME = 0.091 ng/mL). The Elman network was the selected model for dosage prediction (RMSE = 0.27 mg/Kg/d, ME = 0.07 mg/Kg/d). However, in both cases, no statistical differences on the accuracy of neural methods were found. The models' robustness is also analyzed by evaluating their performance when noise is introduced at input nodes, and it results in a helpful test for models' selection. We conclude that neural networks can be used to predict both dose and blood concentrations of cyclosporine in steady-state. This novel approach has produced accurate and validated models to be used as decision-aid tools.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2003.809498DOI Listing

Publication Analysis

Top Keywords

neural networks
12
kidney transplantation
8
blood concentrations
8
fir network
8
blood concentration
8
dosage prediction
8
networks
5
prediction
4
prediction cyclosporine
4
dosage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!