This study investigated immunohistochemical properties of cholinergic neurons in the anterior pelvic ganglion (APG) of juvenile male pigs (n=7). Cholinergic neurons were identified using antibodies against choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT). Immunoblotting was applied to verify the specificity of ChAT-immunostaining. Western blotting performed on APG tissue homogenates detected single immunoreactive protein with a molecular weight matching that of ChAT (71.6 kDa). It was found that many APG neurons expressed immunoreactivity to ChAT or VAChT (40% and 39% of the neurons, respectively). The analysis of adjacent sections from the ganglion revealed complete colocalization of ChAT and VAChT in these nerve cells. Furthermore, virtually all the ChAT-positive neurons were tyrosine hydroxylase (TH)-negative (non-adrenergic) but many of them displayed immunoreactivity to nitric oxide synthase (NOS), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) or somatostatin (SOM). There were also single nerve cell bodies that stained for neither ChAT nor TH. The comparison of the adjacent sections revealed that NOS, VIP, NPY and SOM were simultaneously co-expressed in the majority of the cholinergic somata. ChAT- or VAChT-positive varicose nerve terminals supplied nearly all neuronal profiles within the ganglion often forming loose basket-like formations surrounding the particular nerve cell bodies. The present study for the first time has revealed that nearly all non-adrenergic neurons in the porcine APG are cholinergic in nature, i.e. express immunoreactivity for ChAT and VAChT. Considering a high coincidence between the chemical coding of non-adrenergic (cholinergic) nerve fibres supplying some porcine male reproductive organs described in earlier papers and that of cholinergic pelvic neurons found in this study it is further concluded that pelvic ganglia are probably the major source of cholinergic innervation for the porcine urogenital system.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!