The sbr gene of Drosophila melanogaster belongs to the NXF (nuclear export factor) family responsible for the mRNA transport from nucleus to cytoplasm. We have shown that in the heat-exposed (37 degrees C, 1 h) females, the l(1)ts403 (sbr10) mutation leads, in particular, to the high-frequency nondisjunction and loss of sex chromosomes in meiosis. For this trait, the incomplete dominance of the sbr10 mutation is observed. At the same time, the sbr10 mutation is recessive for many other traits of the heat-exposed flies: reduced viability, low fertility, impaired synthesis of the heat shock proteins, etc. The females heterozygous for the null allele (Df(1)vL4, a deletion eliminating gene srb) do not differ from females homozygous for the wild-type allele in frequency of the heat shock-induced nondisjunction and loss of sex chromosomes in meiosis. Because of this, the sbr10 mutation can be assigned to the gain-of-function alleles (those gaining the dominance function). Expression of the mutant sbr10 allele against the background of the wild-type allele suggests that in the heat shock-exposed females, the heat-modified product of this ts allele has a strong effect on sex chromosome disjunction in meiosis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sbr10 mutation
20
sex chromosomes
12
chromosomes meiosis
12
l1ts403 sbr10
8
drosophila melanogaster
8
nondisjunction loss
8
loss sex
8
wild-type allele
8
sbr10
6
mutation
5

Similar Publications

Nondisjunction and loss of sex chromosomes caused by exposure of male Drosophila melanogaster to heat shock (HS) (37 degrees C for 1 h) has been studied to determine the role of mutation l(1)ts403 (sbr10) in the control of chromosome segregation during cell division. Hyperthermia of males at the pupal stage has been demonstrated to increase the number of offspring with abnormalities of not only paternal, but also maternal sex chromosome sets. According to the criterion used, there is a temperature-sensitive period of spermatogenesis, which presumably coincides with meiosis.

View Article and Find Full Text PDF

In Drosophila melanogaster the small bristles (sbr) gene is vital and evolutionary conservative and controls nuclear export of mRNA. Sbr mutant alleles had a broad pleiotropic effect. High frequency of abnormal larva dying (up to 18 %) at the first instar stage in progeny of heat shock (37 degrees C, 1 h) treated mutant females is one of the most interesting l(l)ts403(sbr10) allele effects.

View Article and Find Full Text PDF

In females of Df(1)v-L4/+(0/+) genotype, the presence of the wild-type allele of small bristles (sbr) gene in a single dose has no significant effect on their fecundity, whereas a reduced dose of the temperature-sensitive allele sbr10(l(1)ts403) causes a strong sterilizing effect in females Df(1)v-L4/sbr10 (0/sbr10) at permissive temperature. We studied the contribution to this effects of the following factors: resorption of egg chambers, decreased oviposition, offspring death at the embryonic and larval stages, and reduced fecundity in females 0/sbr10. Sterilizing effect of the mutant sbr10 allele proved to be primarily caused by offspring lethality at the embryonic and first-instar larval stages.

View Article and Find Full Text PDF

The sbr gene of Drosophila melanogaster belongs to the NXF (nuclear export factor) family responsible for the mRNA transport from nucleus to cytoplasm. We have shown that in the heat-exposed (37 degrees C, 1 h) females, the l(1)ts403 (sbr10) mutation leads, in particular, to the high-frequency nondisjunction and loss of sex chromosomes in meiosis. For this trait, the incomplete dominance of the sbr10 mutation is observed.

View Article and Find Full Text PDF

A DNA sequence from the 9F region of Drosophila melanogaster polytene chromosomes was cloned. Sequencing the cloned region and its comparison with the known sequences of the D. melanogaster genome showed that the cloned DNA part contains gene sbr and adjacent sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!