Distribution of CNTF receptor alpha protein in the central nervous system of the chick embryo.

J Comp Neurol

Department of Ophthalmology and Visual Sciences, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA.

Published: June 2003

Ciliary neurotrophic factor (CNTF) promotes the survival and differentiation of various neuronal and glial cell populations in the nervous system of vertebrates. In mammals, the ligand-binding alpha-subunit of the CNTF receptor (CNTFRalpha) is expressed in a variety of neuronal populations, including all CNTF-responsive cells. Previous studies suggested that functional differences in the CNTF/CNTF receptor system between chicks and mammals exist. The purpose of the present study was to examine the temporal and spatial expression pattern of the chick CNTFRalpha protein during CNS development. Receptor expression was detectable by immunoblotting in all CNS areas tested but showed area-specific developmental regulation. Interestingly, two variants of CNTFRalpha, 69 and 65 kD, were identified by immunoblotting with a shift from the higher to the lower molecular mass species occurring during development. Immunoreactivity for CNTFRalpha protein was preferentially observed in neuropil and white matter structures of the developing CNS while neuronal somata generally appeared unlabeled. For example, expression was observed in the olfactory system, in the telencephalon, in parts of the somatosensory system, in components of the tectofugal pathway, in the cerebellum, and in auditory brainstem nuclei. Fiber tracts that exhibit CNTFRalpha immunoreactivity were the lateral forebrain bundle, occipitomesencephalic tract, quintofrontal tract, and vestibular nerve. Our study identifies potential new targets of a chick CNTF-related molecule and reveals significant regional differences of CNTFRalpha protein expression between chick and mammals. These results suggest that the CNTF receptor performs distinct developmental functions in different animals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.10701DOI Listing

Publication Analysis

Top Keywords

cntf receptor
12
cntfralpha protein
12
nervous system
8
cntfralpha
6
receptor
5
system
5
distribution cntf
4
receptor alpha
4
protein
4
alpha protein
4

Similar Publications

Breast cancer stem cells (CSCs) are resistant to most cancer therapeutics and contribute to tumor recurrence and metastasis. Two breast CSC-promoting transcription factors, truncated glioma-associated oncogene homolog 1 (tGLI1) and signal transducer and activator of transcription 3 (STAT3), have been reported to be frequently co-expressed in HER2-enriched breast cancer and triple-negative breast cancer (TNBC), undergo protein-protein interactions for gene regulation and activation, and functionally cooperate to promote breast CSCs. STAT3 can be activated by activated interleukin-6 receptor/glycoprotein-130 (IL-6R/GP130).

View Article and Find Full Text PDF

Interleukin-6 (IL-6) is a major pro-inflammatory cytokine that demonstrates a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions.

View Article and Find Full Text PDF

Characterization and functional analysis of interleukin-6 and its receptor subunits (IL-6Rα and IL-6Rβ) in the yellow drum, Nibea alibiflora.

Dev Comp Immunol

January 2025

National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China. Electronic address:

Interleukin 6 (IL-6) is one of the cytokines found to be multifunctional and biologically effective, regulating immune and inflammatory response by interacting with receptors to transmit signals. In this study, the full-length cDNAs of IL-6 (named as NaIL-6) and its receptors IL-6R and gp130 (named as NaIL-6Rα and NaIL-6Rβ) of Nibea albiflora were acquired and they possessed the typical symbolic motifs similar to its teleost orthologues in multiple sequence comparisons. The phylogenetic trees showed that NaIL-6 and its receptors clustered with their counterparts in bony fish, and had the closest affinity to Larimichthys crocea.

View Article and Find Full Text PDF

Leukemia inhibitory factor (LIF) receptor amplifies pathogenic activation of fibroblasts in lung fibrosis.

Proc Natl Acad Sci U S A

December 2024

Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA 02115.

Article Synopsis
  • Fibrosis contributes to serious damage in organs, but treatments targeting specific activators have often failed, leading researchers to focus on the leukemia inhibitory factor receptor (LIFR) as a key player in fibrotic diseases like idiopathic pulmonary fibrosis (IPF).
  • In IPF, myofibroblasts highly express LIF, and fibroblasts in key fibrotic areas coexpress LIF and LIFR, demonstrating LIFR's role in amplifying signals from other fibrotic drivers like TGFβ1, IL-4, and IL-13.
  • Blocking LIFR reduces the activation of profibrotic genes and highlights LIFR's function as a master amplifier of harmful signals
View Article and Find Full Text PDF

It has recently become clear that the gut microbiota influence intestinal motility, intestinal barrier function, and mucosal immune function; therefore, the gut microbiota are deeply involved in the maintenance of intestinal homeostasis. The effects of the gut microbiota on the enteric nervous system (ENS) in the adult intestine, however, remain poorly understood. In the current study, we investigated the effects of the gut microbiota on the ENS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!