AI Article Synopsis

  • Bacillus anthracis, the bacterium that causes inhalational anthrax, has key virulence factors located on two specific plasmids, pXO1 and pXO2.
  • A complete analysis of the B. anthracis Ames chromosome revealed additional genes potentially linked to its pathogenicity, including those involved in iron acquisition and surface proteins that could be targets for vaccines.
  • Comparative studies showed that although chromosomal genes are similar among related Bacillus species, the plasmid genes exhibited more variability, indicating that plasmids may move more easily between strains.

Article Abstract

Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity--including haemolysins, phospholipases and iron acquisition functions--and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature01586DOI Listing

Publication Analysis

Top Keywords

bacillus anthracis
8
anthracis ames
8
pxo1 pxo2
8
complete sequence
8
surface proteins
8
anthracis
6
genome sequence
4
bacillus
4
sequence bacillus
4
ames comparison
4

Similar Publications

Bacillus cereus biovar anthracis (Bcbva) causes anthrax-like disease in animals, particularly in the non-human primates and great apes of West and Central Africa. Genomic analyses revealed Bcbva as a member of the B. cereus species that carries two plasmids, pBCXO1 and pBCXO2, which have high sequence homology to the B.

View Article and Find Full Text PDF

Anthrax is an acute infectious disease caused by Bacillus anthracis, which can infect various animals and humans. Cutaneous anthrax primarily presents as infiltrative, edematous erythema, surface vesicles, hemorrhagic vesicles, and necrotic eschar; some patients may also experience systemic symptoms such as fever and leukocytosis. With economic development and improvements in public health conditions, naturally occurring cases of cutaneous anthrax have significantly decreased, leading to limited reports on the pathological manifestations of this disease.

View Article and Find Full Text PDF

Introduction: Anthrax, caused by the bacterium Bacillus anthracis, stands as a formidable threat with both natural and bioterrorism-related implications. Its ability to afflict a wide range of hosts, including humans and animals, coupled with its potential use as a bioweapon, underscores the critical importance of understanding and advancing our capabilities to combat this infectious disease. In this context, exploring futuristic approaches becomes imperative, as they hold the promise of not only addressing current challenges but also ushering in a new era in anthrax management.

View Article and Find Full Text PDF

Nanobody (Nb)-induced disassembly of surface array protein (Sap) S-layers, a two-dimensional paracrystalline protein lattice from , has been presented as a therapeutic intervention for lethal anthrax infections. However, only a subset of existing Nbs with affinity to Sap exhibit depolymerization activity, suggesting that affinity and epitope recognition are not enough to explain inhibitory activity. In this study, we performed all-atom molecular dynamics simulations of each Nb bound to the Sap binding site and trained a collection of machine learning classifiers to predict whether each Nb induces depolymerization.

View Article and Find Full Text PDF

is a spore-forming gram-positive bacterium responsible for anthrax, an infectious disease with a high mortality rate and a target of concern due to bioterrorism and long-term site contamination. The entire surface of vegetative cells in exponential or stationary growth phase is covered in proteinaceous arrays called S-layers, composed of Sap or EA1 protein, respectively. The Sap S-layer represents an important virulence factor and cell envelope support structure whose paracrystalline nature is essential for its function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!