Alternative approach for utilization of pentose stream from sugarcane bagasse by an induced flocculent Pichia stipitis.

Appl Biochem Biotechnol

Department of Chemical Engineering, Faculty of Chemical Engineering of Lorena, PO Box 116, 12606-970, Lorena, SP, Brazil.

Published: August 2003

A new approach for the utilization of hemicellulosic hydrolysate from sugarcane bagasse is described. This approach consists of using the hydrolysate to dilute the conventional feedstock (sugarcane juice) to the usual sugar concentration (150 g/L) employed for the industrial production of ethanol. The resulting sugar mixture was used as the substrate to evaluate the performance of a continuous reactor incorporating a cell recycle module, operated at several dilution rates. An induced flocculent pentose-fermenting yeast strain was used for this bioconversion. Under the conditions used, the reactor performance was satisfactory at substrate feed rates of 30 g/(L h) or less, corresponding to an ethanol productivity of about 11.0 g/(L h) and an overall sugar conversion >95%. These results show real advantages over the existing alternatives for a better exploitation of surplus bagasse to increase industrial alcohol production.

Download full-text PDF

Source
http://dx.doi.org/10.1385/abab:107:1-3:547DOI Listing

Publication Analysis

Top Keywords

approach utilization
8
sugarcane bagasse
8
induced flocculent
8
alternative approach
4
utilization pentose
4
pentose stream
4
stream sugarcane
4
bagasse induced
4
flocculent pichia
4
pichia stipitis
4

Similar Publications

The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.

View Article and Find Full Text PDF

A Clinical Drug as the Three-Photon Fluorescence Probe for In Vivo Microscopic Imaging of Mouse Kidney.

J Biophotonics

January 2025

State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.

Three-photon fluorescence (3PF) microscopy encounters significant challenges in biological research and clinical applications, primarily due to the limited availability of high-performance probes. We took a shortcut by exploring the excellent 3PF property of berberine hydrochloride (BH), a clinically utilized drug derived from the traditional Chinese medicine, Coptis. Capitalizing on its renal metabolism characteristics, we employed BH for in vivo 3PF microscopic imaging of the mouse kidney.

View Article and Find Full Text PDF

In recent times, chemical looping offered a sustainable alternative for upgrading light hydrocarbons into olefins. Olefins are valuable platform chemicals that are utilized for diverse applications. To close the wide shortfall in their global supply, intensified efforts are ongoing to develop on-purpose production technologies.

View Article and Find Full Text PDF

Background: Double outlet right ventricle (DORV) is a challenging congenital cardiac lesion to surgically master. We utilize computed tomography-guided-three-dimensional (3D) modeling/printing and novel in-house software to delineate anatomical relationships providing operative insight into the surgical approach. Our intent is to highlight this and showcase our technology.

View Article and Find Full Text PDF

Rapeseed ( L.) is known for its high-quality seed oil and protein content. However, its use in animal feed is restricted due to antinutritional factors present in the seedcake, with sinapine being one of the main compounds that reduces palatability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!