1. Ethanol (EtOH) tachyphylaxis (acute tolerance), a time-dependent decrease in apparent potency, is known in vivo and in some neuronal preparations. The present studies characterize EtOH tachyphylaxis in spinal motorneurons and test the hypothesis that metabotropic glutamate receptors (mGluRs) play a role. 2. Patch clamp studies were carried out in motorneurons in rat spinal cord slices. Currents were evoked by pulses of glutamate, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) or N-methyl-D-aspartic acid (NMDA). 3. In nine of 15 cells, ethanol depression of glutamate-evoked currents was time-dependent. EtOH depressed current area 36.9+/-3% at 8-10 min, but only 16.8+/-3% at 20 min. Mean reduction in depression was 20.1+/-1%, N=9. Tachyphylaxis was less prominent in currents evoked by AMPA or NMDA, appearing in two of 10 AMPA and three of 11 NMDA currents. 4. The mGluR agonist trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD) increased, the antagonist (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG) decreased the area of glutamate-evoked currents. ACPD also increased the area of NMDA- and AMPA-evoked currents. 5. ACPD increased the incidence of tachyphylaxis in glutamate-evoked currents to 100% (N=9); MCPG markedly reduced tachyphylaxis. ACPD also increased the incidence of tachyphylaxis in currents evoked by NMDA and AMPA to five of eight and four of seven neurons, respectively. 6. Block of G-protein pathways by intracellular GDP-beta-s abolished tachyphylaxis in glutamate-evoked currents (N=8); however, currents recovered only partially following EtOH washout. 7. Activation of mGluRs contributes to neuronal tachyphylaxis to EtOH in spinal cord motorneurons, probably via G-protein pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573794PMC
http://dx.doi.org/10.1038/sj.bjp.0705175DOI Listing

Publication Analysis

Top Keywords

glutamate-evoked currents
16
acpd increased
16
spinal cord
12
currents evoked
12
currents
10
tachyphylaxis spinal
8
cord motorneurons
8
metabotropic glutamate
8
glutamate receptors
8
tachyphylaxis
8

Similar Publications

Glioma synapses recruit mechanisms of adaptive plasticity.

Nature

November 2023

Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

The role of the nervous system in the regulation of cancer is increasingly appreciated. In gliomas, neuronal activity drives tumour progression through paracrine signalling factors such as neuroligin-3 and brain-derived neurotrophic factor (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. The consequent glioma cell membrane depolarization drives tumour proliferation.

View Article and Find Full Text PDF

The majority of excitatory neurotransmission in vertebrate CNS is mediated by glutamate binding to different types of receptors. Among them, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and kainite receptors (KAR) are ionotropic receptors playing important pathophysiological roles. A number of small molecules acting as positive allosteric modulators (PAM) of AMPAR have been proposed as drugs for neurological disorders, however, there is no such abundance of ligands capable of modulating KARs activity.

View Article and Find Full Text PDF

Oxycodone, a semisynthetic opioid analgesic with actions similar to morphine, is extensively prescribed for treatment of moderate to severe acute pain. Given that glutamate plays a crucial role in mediating pain transmission, the purpose of this study was to investigate the effect of oxycodone on glutamatergic synaptic transmission in rat hippocampal CA3 area, which is associated with the modulation of nociceptive perception. Whole-cell patch-clamp recordings revealed that oxycodone effectively reduced presynaptic glutamate release, as detected by decreased frequencies of spontaneous excitatory postsynaptic currents (sEPSCs) and miniature EPSCs (mEPSCs), without eliciting significant changes in the amplitudes of sEPSCs and mEPSCs and glutamate-evoked inward currents.

View Article and Find Full Text PDF

Virus-mediated Dnmt1 and Dnmt3a deletion disrupts excitatory synaptogenesis and synaptic function in primary cultured hippocampal neurons.

Biochem Biophys Res Commun

May 2020

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China. Electronic address:

Dnmt1, Dnmt3a and Dnmt3b are main genes encoding DNA methyltransferases (Dnmts) which catalyze DNA methylation and regulate gene expression without changing DNA sequence. Our previous study disclosed that double knockout of Dnmt1 and Dnmt3a in forebrain excitatory neurons impaired synaptic plasticity and led to hippocampus-dependent learning and memory deficits, however the underlying synaptic mechanisms remain uncertain. In this study, we selectively knocked down the expression of Dnmt1 and Dnmt3a in primary cultured hippocampal neurons derived from embryonic Dnmt1,3a mice by transfection with Cre-expressing virus, to study the effect of Dnmts and mediated DNA methylation on synaptogenesis and synaptic function.

View Article and Find Full Text PDF

Purpose: In the mammalian retina, cannabinoid type 1 receptors (CB1Rs) are well-positioned to alter inhibitory synaptic function from amacrine cells and, thus, might influence visual signal processing in the inner retina. However, it is not known if CB1R modulates amacrine cells feedback inhibition at retinal bipolar cell (BC) terminals.

Methods: Using whole-cell voltage-clamp recordings, we examined the pharmacological effect of CB1R activation and inhibition on spontaneous inhibitory postsynaptic currents (sIPSCs) and glutamate-evoked IPSCs (gIPSCs) from identified OFF BCs in light-adapted rat retinal slices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!