Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Proteolysis of connective tissue by enzymes such as PMN-elastase (PMNE) is a crucial step during inflammation and metastasis. Semisynthetic sulfated carbohydrates (SC) were shown to exhibit potent antiinflammatory and antimetastatic activity in vivo. The aim of the present study was to examine whether interferences with PMN-elastase may contribute to these effects. Therefore, the interactions of these compounds with PMNE were evaluated in various test systems. Besides semisynthetic alpha-1,4/1,6- and beta-1,3-glucan sulfates, UFH, a LMWH and pentosan polysulfate (PPS) were included in the study. The inhibitory activity of SC improves not only with increasing molecular weight (MW 10 - 250 kDa: 37 - 54% inhibition at 0.25 micro g/ml) and degree of sulfation (DS 0.25 - 2.0: 16 - 50% inhibition at 0.25 micro g/ml), but depends also on their genuine polysaccharide structure (IC50 beta-1,3-glucan sulfate 0.18 / alpha-1,4/1,6-glucan sulfate 0.25 / UFH 0.5 micro g/ml). Using physiological substrate assays (collagen, elastin), beta-1,3- and alpha-1,4/1,6-glucan sulfates are more active than UFH (inhibition at 1.5 micro g/ml: 41 / 32 / 12%). According to enzyme-inhibitor binding studies, SC exhibit structure dependent affinity to the enzyme (K(d) for PMNE: beta-1,3 < alpha-1,4/1,6 < UFH). Finally, SC were shown to inhibit cancer cell-mediated elastinolysis.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!