Background: Receptor for advanced-glycation end products (RAGE) and its ligands AGEs and S100/calgranulins have been implicated in a range of disorders. However, the role of RAGE/ligand interaction in neointimal hyperplasia after vascular injury remains unclear.

Methods And Results: We examined the expression of RAGE and its ligands after balloon injury of the carotid artery in both Zucker diabetic and nondiabetic rats. Using a soluble portion of the extracellular domain of RAGE, we determined the effects of suppressing RAGE/ligand interaction on vascular smooth muscle cell (VSMC) proliferation and neointimal formation after arterial injury. We demonstrate a significantly increased accumulation of AGE and immunoreactivities of RAGE and S100/calgranulins in response to balloon injury in diabetic compared with nondiabetic rats. Blockade of RAGE/ligand interaction significantly decreased S100-stimulated VSMC proliferation in vitro and bromodeoxyuridine (BrdU)-labeled proliferating VSMC in vivo, and suppressed neointimal formation and increased luminal area in both Zucker diabetic and nondiabetic rats.

Conclusions: These findings indicate that RAGE/ligand interaction plays a key role in neointimal formation after vascular injury irrespective of diabetes status and suggest a novel target to minimize neointimal hyperplasia.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.CIR.0000063577.32819.23DOI Listing

Publication Analysis

Top Keywords

neointimal formation
16
rage/ligand interaction
16
arterial injury
8
rage ligands
8
neointimal hyperplasia
8
vascular injury
8
balloon injury
8
zucker diabetic
8
diabetic nondiabetic
8
nondiabetic rats
8

Similar Publications

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.

View Article and Find Full Text PDF

Hemodialysis for chronic kidney disease (CKD) relies on vascular access (VA) devices, such as arteriovenous fistulas (AVF), grafts (AVG), or catheters, to maintain blood flow. Nonetheless, unpredictable progressive vascular stenosis due to neointimal formation or complete occlusion from acute thrombosis remains the primary cause of mature VA failure. Despite emergent surgical intervention efforts, the lack of a reliable early detection tool significantly reduces patient outcomes and survival rates.

View Article and Find Full Text PDF

Bone Marrow-derived NGFR-positive Dendritic Cells Regulate Arterial Remodeling.

Am J Physiol Cell Physiol

January 2025

Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.

It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.

View Article and Find Full Text PDF

Synthetic vascular grafts are promising conduits for small caliber arteries. However, due to restenosis caused by intimal hyperplasia, they cannot keep long patency in vivo. In this work, through single cell RNA sequencing, we found that thrombospondin-1 (THBS1) was highly expressed in the regenerated smooth muscle cells (SMCs) in electrospun polycaprolactone (PCL) vascular grafts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!