Based on the importance of crystallizing membrane proteins in a rational way, cytochrome bc(1) complex (BC1) was crystallized using polyethylene glycol (PEG) as a sole crystallization agent. Interaction between protein-detergent complexes of BC1 was estimated by dynamic light scattering, and was compared with the numerical calculation using the Derjaguin-Landau-Verwey-Overbeek potential plus a depletion potential, without considering specific surface properties of the protein-detergent complexes. The experiments and calculation were found to be consistent and we obtained a relation between PEG molecular weight M and the range of depletion zone delta as delta approximately M(0.48+/-0.02). The stability of liquid phase of BC1 solutions was controlled by a ratio of (the range of depletion zone)/(the radius of a BC1 particle), which was consistent with recent theoretical predictions. The crystallization was most successful under a condition where the stability of the liquid phase changed from stable to unstable. The PEG molecular weight that fulfilled this condition coincided with the one used empirically to crystallize BC1 in the past by a number of groups. These results are compared to the fact that membrane proteins were often successfully crystallized close to the detergent cloud point.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302890PMC
http://dx.doi.org/10.1016/S0006-3495(03)70054-XDOI Listing

Publication Analysis

Top Keywords

polyethylene glycol
8
membrane proteins
8
protein-detergent complexes
8
peg molecular
8
molecular weight
8
range depletion
8
stability liquid
8
liquid phase
8
bc1
6
rationalization membrane
4

Similar Publications

A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.

View Article and Find Full Text PDF

A Facile Approach To Develop Ion Pair Micelles Satellited Freshly Derived Neutrophils For Targeted Tumor Therapy.

Adv Healthc Mater

January 2025

Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.

Immune cells show enormous potential for targeted nanoparticle delivery due to their intrinsic tumor-homing skills. However, the immune cells can internalize the nanoparticles, leading to cellular functional impairments, degradation of the nanoparticles, and delayed release of drugs from the immune cells. To address these issues, this study introduces an approach for the synthesis of freshly derived neutrophils (NUs)-based nanocarriers system where the NUs are surfaced by dialdehyde alginate-coated self-assembled micelles loaded with mitoxantrone (MIT) and indocyanine green (ICG) (i.

View Article and Find Full Text PDF

Purpose: This study investigated the synergistic effects of reduced graphene oxide (RGO) on the antibacterial activity of three calcium hydroxide-based intracanal medicaments with different vehicles.

Methods: Multispecies biofilms were cultured in a bovine root canal model. Intracanal medicaments containing nonaqueous vehicles, including N-methyl-2-pyrrolidone (NMP; CleaniCal), propylene glycol (PG; UltraCal XS), and polyethylene glycol (PEG; Calcipex II), were placed in the model.

View Article and Find Full Text PDF

Solid tumors (particularly the desmoplastic ones) usually harbor insurmountable mechanical barriers and formidable immunosuppressive tumor microenvironment (TME), which severely restricted nanomedicine-penetration and vastly crippled outcomes of numerous therapies. To overcome these barriers, a versatile nanoplatform orchestrated mechanotherapy with chemoimmunotherapy was developed here to simultaneously modulate tumor physical barriers and remodel TME for synergistically enhancing anticancer efficiency. Dexamethasone (DMS) and cis-aconityl-doxorubicin (CAD) were co-hitchhiked into phenylboronic acid functionalized polyethylenimine (PEI-PBA) carrier, and further in situ shielded by aldehyde-modified polyethylene glycol (PEG) to form CAD/DMS@PEG/PEI-PBA (CD@PB) nanoparticles (NPs).

View Article and Find Full Text PDF

Unraveling the in vivo pharmacokinetic behavior of mPEG-NH polymer in rats by UHPLC-MS/MS assay.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China. Electronic address:

As an important chemical reagent, methoxy polyethylene glycol amine (mPEG-NH) is widely used in biomedical field. Unraveling the pharmacokinetic behavior of mPEG-NH polymers is essential for revealing the toxicity and efficiency of mPEG-NH related drug delivery systems. In this study, a simple analytical assay based on mass spectrometry (MS) was first established and validated for quantification of mPEG-NH in biological matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!