Mixing and thermal behavior of hydrated and air-dried mixtures of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1,2-distearoyl-d70-sn-glycero-3-phosphocholine (DSPCd-70) in the absence and presence of trehalose were investigated by Fourier transform infrared spectroscopy. Mixtures of DLPC:DSPCd-70 (1:1) that were air-dried at 25 degrees C show multiple phase transitions and mixed phases in the dry state. After annealing at high temperatures, however, only one transition is seen during cooling scans. When dried in the presence of trehalose, the DLPC component shows two phase transitions at -22 degrees C and 75 degrees C and is not fully solidified at -22 degrees C. The DSPCd-70 component, however, shows a single phase transition at 78 degrees C. The temperatures of these transitions are dramatically reduced after annealing at high temperatures with trehalose. The data suggest that the sugar has a fluidizing effect on the DLPC component during drying and that this effect becomes stronger for both components with heating. Examination of infrared bands arising from the lipid phosphate and sugar hydroxyl groups suggests that the strong effect of trehalose results from direct interactions between lipid headgroups and the sugar and that these interactions become stronger after heating. The findings are discussed in terms of the protective effect of trehalose on dry membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302866 | PMC |
http://dx.doi.org/10.1016/S0006-3495(03)70030-7 | DOI Listing |
Protein Sci
February 2025
Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA.
Organisms from all kingdoms of life depend on Late Embryogenesis Abundant (LEA) proteins to survive desiccation. LEA proteins are divided into broad families distinguished by the presence of family-specific motif sequences. The LEA_4 family, characterized by 11-residue motifs, plays a crucial role in the desiccation tolerance of numerous species.
View Article and Find Full Text PDFJ Neurol
January 2025
IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy.
The neuronal ceroid lipofuscinoses (NCLs) are incurable pediatric neurodegenerative diseases characterized by accumulation of lysosomal material and dysregulation of autophagy. Given the promising results of treatment with trehalose, an autophagy inducer, in cell and animal models of NCL, we conducted an open-label, non-placebo-controlled, non-randomized 12-month prospective study in NCL patients receiving oral trehalose (4 g/day). All were treated with a commercially available formulation for 6 months, followed by a 6-month washout.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio n.42, 40126 Bologna, Italy.
Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium . In the presence of a high concentration of trehalose, following the activation of the photochemistry by flashes of light, a slowdown of the electrogenic reactions related to the activity of the photosynthetic reaction center and cytochtome (cyt) complexes is observable.
View Article and Find Full Text PDFUnlabelled: Mycobacterial cell envelopes are rich in unusual lipids and glycans that play key roles during infection and vaccination. The most abundant envelope glycolipid is trehalose dimycolate (TDM). TDM compromises the host response to mycobacterial species via multiple mechanisms, including inhibition of phagosome maturation.
View Article and Find Full Text PDFFood Chem
December 2024
School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China. Electronic address:
Plant protein-stabilized Pickering nanoemulsions show potential as plant-based milk substitutes; however, their stability is challenged by mechanical stress during transportation and oxidative deterioration during storage. Herein, soybean isolate protein-curcumin composite nanoparticle (SPI-Cur-NPs)-stabilized Pickering nanoemulsions were converted into microcapsule powders via spray-drying with maltodextrin (MD), trehalose anhydrous (TA), and inulin (IN) as wall materials. Robust intermolecular hydrogen bonds and an amorphous structure were formed using composite wall materials, reducing microcapsule surface fissures while improving encapsulation rate (92.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!