The gastric proton pump, H(+),K(+)-ATPase, consists of the catalytic alpha-subunit and the noncatalytic beta-subunit. These subunits are assembled in the endoplasmic reticulum (ER) and leave the ER to reach to the cell surface as a functional holoenzyme. We studied the quantity control mechanism of the H(+),K(+)-ATPase in the ER by using a heterologous expression system in human embryonic kidney 293 cells. The alpha-subunit in the alpha-expressing cells was degraded more rapidly than in the alpha+beta-expressing cells. It was stabilized, however, in the presence of a proteasome inhibitor, lactacystin. Polyubiquitination of the alpha-subunit was observed in the alpha-expressing cells as well as in the alpha+beta-expressing cells. The extent of polyubiquitination was higher in the former alpha-expressing cells especially in the presence of lactacystin. On the other hand, polyubiquitination of the beta-subunit was not observed in the absence and presence of lactacystin. When the alpha-subunit was coexpressed with a mutant beta-subunit that lacks alpha/beta assembly capacity, degradation of the alpha-subunit was accelerated in parallel with increased polyubiquitination of the alpha-subunit. These results indicate that the ubiquitin/proteasome system is involved in degradation of the unassembled alpha-subunits in the ER to control the cell surface expression of the functional alpha/beta holoenzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi020513d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!