Oxysterol-induced toxicity in R28 and ARPE-19 cells.

Neurochem Res

Molecular Eye Research Laboratory, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.

Published: June 2003

Studies have shown an intimate relationship between cholesterol and retinal diseases; we examined the effects of cholesterol oxides on cultured cells. Using the rat retinal precursor cell line R28 and the human RPE cell line ARPE-19, we investigated the potential cytotoxicity of cholesterol oxides. Cultured R28 and ARPE-19 cells were treated with either 25-hydroxycholesterol and 7-ketocholesterol (0-50 microg/ml). Cell viability was determined by the WST-1 colorimetric assay. Production of reactive oxygen intermediate (ROI) was assessed by a fluorescent probe-based assay (2',7'-dichlorodihydrofluorescein diacetate [H2DCFDA]). To detect the presence of apoptosis, DNA fragmentation gel analysis and Hoescht nuclear staining were performed. Both cholesterol oxides tested were toxic in a time- and dose-dependent fashion to the two cell lines used in this study. Treatment of R28 cells with either 25-hydroxycholesterol or 7-ketocholesterol at a concentration of 25 micro/ml resulted in greater than 50% loss of cell viability after 24 h. ARPE-19 cells were slightly less affected, with a loss of cell viability of approximately 20% and 40% after 24 h-exposure of 25-hydroxycholesterol and 7-ketocholesterol, respectively. DNA fragmentation and chromatin condensation demonstrated apoptotic events occurring in 7-ketocholesterol-treated cells. The fluorescent assay for ROI production showed that after an hour of exposure to 7-ketocholesterol, R28 cells responded with increased levels of ROIs, whereas no immediate production of ROIs were detected with treated ARPE-19 cells. These in vitro findings provide evidence that cholesterol oxides can directly damage cultured retinal and RPE cells. The oxysterol-induced oxidative stress in these cells may be a factor in the pathology of retinal degenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1023223409798DOI Listing

Publication Analysis

Top Keywords

arpe-19 cells
16
cholesterol oxides
16
25-hydroxycholesterol 7-ketocholesterol
12
cell viability
12
cells
10
r28 arpe-19
8
oxides cultured
8
dna fragmentation
8
r28 cells
8
loss cell
8

Similar Publications

Epithelial‒mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells is believed to play a key role in the pathogenesis of proliferative vitreoretinopathy (PVR). The ability of Hirudo to promote blood flow and dispel blood stasis may be related to its anti-EMT effects. Through the use of a network pharmacology method, the mechanism by which Hirudo treats PVR was investigated in this study, and the findings were confirmed through in vitro cellular tests.

View Article and Find Full Text PDF

Senescent retinal pigment epithelial cells play a key role in neovascular age-related macular degeneration (nAMD); however, the mechanisms underlying the angiogenic ability of these cells remain unclear. Herein, we investigated the effects of the senescent adult retinal pigment epithelial cell line-19 (ARPE-19) on wound healing, cell migration and survival, and tube formation abilities of human umbilical vein endothelial cells (HUVECs). Additionally, we used Brown Norway rats to establish a laser-induced choroidal neovascularization (CNV) model for further nAMD-related studies.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) contributes to retinal homeostasis, and its metabolic dysfunction is implied in the development of retinal degenerative disease. The isoform M2 of pyruvate kinase (PKM2) is a key factor in cell metabolism, and its function may be affected by insulin-like growth factor 1 (IGF-1). This study aims to investigate the effect of IGF-1 on PKM2 modulation of RPE cells and whether co-treatment with klotho may preserve it.

View Article and Find Full Text PDF

Degenerative retinal diseases can lead to blindness if left untreated. At present, there are no curative therapies for retinal diseases. Therefore, effective treatment strategies for slowing the progression of retinal diseases and thus improving patients' life standards are urgently needed.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess how the SUMOylation inhibitor TAK981 affects oxidative damage caused by hydrogen peroxide (H2O2) in human retinal pigment epithelial cells (ARPE-19) and its underlying mechanisms.
  • An oxidative damage model was created, and various concentrations of TAK981 were tested to see their impact on cell viability, levels of oxidative stress markers, and inflammatory cytokines, while comparing them to control and model groups.
  • Results showed that H2O2 reduced cell viability significantly, while TAK981 treatment improved cell survival and reduced oxidative damage and inflammation markers, indicating its potential protective effects against oxidative stress in ARPE-19 cells.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!