Reflections on apparent DNA bending by charge variants of bZIP proteins.

Biopolymers

Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, MN 55905, USA.

Published: May 2003

Basic-leucine zipper (bZIP) proteins have been studied intensely as transcription factors. It has been proposed that the bZIP domain might modulate transcription activation through the induction of conformational changes in the DNA binding site. We have been interested in using bZIP peptides as convenient models with which to study the role of asymmetric phosphate neutralization in DNA bending. DNA bending experiments have yielded discordant results for bZIP peptides studied by electrophoretic- vs solution-based assays. We review the history of DNA bending assays involving bZIP peptides and introduce the reader to examples of discordant results. Our recent published experiments designed to clarify this field of study will then be reviewed. The engineering of protein fusions has established that electrophoretic phasing assays are relatively insensitive to precise protein structure/conformation and instead appear to report DNA bending, as influenced by protein charge. New applications of time-resolved fluorescence resonance energy transfer (FRET) have allowed for the first time corroboration of electrophoretic phasing assays with solution-based FRET measurements. We report that two conventional DNA bending assays that rely on DNA ligation cannot be applied to analysis of the bZIP peptides we studied due to ligation inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.10321DOI Listing

Publication Analysis

Top Keywords

dna bending
24
bzip peptides
16
dna
8
bzip proteins
8
peptides studied
8
bending assays
8
electrophoretic phasing
8
phasing assays
8
bzip
7
bending
6

Similar Publications

In the biosensor field, the accurate detection of contagious disease has become one of the most important research topics in the post-pandemic period. However, conventional contagious viral biosensors normally require chemical modifications to introduce the probe molecules to nucleic acids such as a redox indicator, fluorescent dye, or quencher for biosensing. To avoid this complex chemical modification, in this research, mismatched DNA with an intercalated metal ion complex (MIMIC) is employed as the probe sequence.

View Article and Find Full Text PDF

A DNA Origami Pivot Hinge Driven by DNA Intercalators.

ACS Nano

December 2024

Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.

Article Synopsis
  • The DNA origami technique allows for the creation of nanoscale structures that can change shape dynamically.
  • A new design features a hinge mechanism that pivots based on the concentration of DNA intercalators, using gold nanoparticles for support.
  • This pivoting motion can be adjusted and repeated, potentially leading to the development of advanced nanosensors and actuators that amplify tiny movements caused by molecular interactions.
View Article and Find Full Text PDF

Smart shape-memory DNA hydrogels, which can respond to various types of external stimuli and undergo macroscopic shape deformations, have shown great potential in various applications. By constructing free-standing films, the deformation and response properties of these hydrogels can be further enhanced, and visualized deformation can be achieved. However, DNA hydrogels that can exhibit rapid and high-degree shape deformations, such as the inverse shape deformations, are still lacking.

View Article and Find Full Text PDF

Cre, a conservative site-specific tyrosine recombinase, is a powerful gene editing tool in the laboratory. Expanded applications in human health are hindered by lack of understanding of the mechanism by which Cre selectively binds and recombines its cognate sequences. This knowledge is essential for retargeting the enzyme to new sites and for mitigating effects of off-target recombination.

View Article and Find Full Text PDF

RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ∼20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!