Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the process by which RNA molecules fold into stable structures includes study of the role of site-bound metal ions. Because the alkaline earth metal ions typically associated with RNA structure [most often Mg(II)] do not provide convenient spectroscopic signals, replacement with metal ions having spectroscopically useful properties has been a valuable approach. The luminescence properties of the lanthanide(III) series, in particular europium(III), have made them useful in the study of complexation with biomolecules. We review the physical, chemical, and spectroscopic characteristics of Eu(III) that contribute to its value as a probe of RNA-metal ion interactions, and examples of information obtained from studies of Eu(III) bound to small RNA stem loops. Although Eu(III) has similar site preference to Mg(II), luminescence and isothermal titration calorimetry measurements indicate that Ln(III) loses water molecules from the inner hydration sphere more readily than does Mg(II), resulting in more direct coordination between RNA and the metal ion and very different energetics of binding. In some cases, e.g., a GAAA tetraloop, binding appears to occur by a lock and key process; in the same base sequence containing certain deoxynucleoside substitutions that alter loop structure, binding appears to occur by an induced fit process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bip.10320 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!