Nectin and afadin constitute a novel intercellular adhesion system that organizes adherens junctions in cooperation with the cadherin-catenin system in epithelial cells. Nectin is a Ca(2+)-independent immunoglobulin-like adhesion molecule and afadin is an actin filament (F-actin)-binding protein that connects nectin to the actin cytoskeleton. At the puncta adhaerentia junctions (PAs) between the mossy fiber terminals and the dendrites of the pyramidal cells in the CA3 area of the adult mouse hippocampus, the nectin-afadin system also colocalizes with the cadherin-catenin system and has a role in the formation of synapses. ZO-1 is another F-actin-binding protein that localizes at tight junctions (TJs) and connects claudin to the actin cytoskeleton in epithelial cells. The nectin-afadin system is able to recruit ZO-1 to the nectin-based cell-cell adhesion sites in nonepithelial cells that have no TJs. In the present study, we investigated the localization of ZO-1 in the mouse hippocampus. Immunofluorescence and immunoelectron microscopy revealed that ZO-1 also localized at the PAs between the mossy fiber terminals and the dendrites of the pyramidal cells in the CA3 area of the adult mouse hippocampus, as described for afadin. ZO-1 colocalized with afadin during the development of synaptic junctions and PAs. Microbeads coated with the extracellular fragment of nectin, which interacts with cellular nectin, recruited both afadin and ZO-1 to the bead-cell contact sites in cultured rat hippocampal neurons. These results indicate that ZO-1 colocalizes with nectin and afadin at the PAs and that the nectin-afadin system is involved in the localization of ZO-1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.10653DOI Listing

Publication Analysis

Top Keywords

mouse hippocampus
16
localization zo-1
12
mossy fiber
12
fiber terminals
12
terminals dendrites
12
dendrites pyramidal
12
pyramidal cells
12
cells ca3
12
ca3 area
12
area adult
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!