The calcium imaging method can detect the spike activities of many neurons simultaneously. In the present experiments, this method was used to search for unique neurons contributing to feeding behavior in the cerebral ganglia of Aplysia kurodai. We mainly explored the neurons whose cell bodies were located in the G cluster and the neuropile region posterior to this cluster on the ventral surface of the cerebral ganglia. When the extract of the food seaweed Ulva was applied to the tentacle-lip region, many neurons stained with a calcium-sensitive dye, Calcium Green-1, showed changes in fluorescence. Some neurons showed rhythmic responses and others showed transient responses, suggesting that these neurons may be partly involved in the feeding circuits. We also identified three motor neurons among these neurons that showed rhythmic fluorescence responses to the taste stimulation. One of them was a motor neuron shortening the anterior tentacle (ATS), and the other two were motor neurons producing lip opening-like (LO(G)) and closing-like (LC(G)) movements, respectively. Application of the Ulva extract to the tentacle-lip region induced phase-locked rhythmic firing activity in these motor neurons, suggesting that these neurons may contribute to the rhythmic patterned movements of the anterior tentacles and lips during the ingestion of seaweed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/neu.10207 | DOI Listing |
J Neuroimmune Pharmacol
January 2025
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.
Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.
View Article and Find Full Text PDFNeurol Ther
January 2025
Department of Medicine, North Tyneside General Hospital, Rake Lane, North Shields, NE29 8NH, UK.
This is an outline for a podcast. Parkinson's Disease (PD) is a progressive neurodegenerative disease in which there is increasing loss of dopamine neurones from the basal ganglia (Simon et al. Clin Geriatr Med.
View Article and Find Full Text PDFPurinergic Signal
January 2025
International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.
View Article and Find Full Text PDFNano Converg
January 2025
Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.
The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha City, Hunan Province, 410011, China.
Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!